All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jdesktop.el.package.html Maven / Gradle / Ivy

The newest version!







    
Customized version of EL for Beans Binding; not for general use.
It is expected that we'll sync up with an official version of EL
in the future.

Provides the API for the Unified Expression Language shared by the JSP 2.1 and JSF 1.2 technologies.

The Expression Language (EL) is a simple language designed to satisfy the specific needs of web application developers. It is currently defined in its own specification document within the JavaServer Pages (tm) (JSP) 2.1 specification, but does not have any dependencies on any portion of the JSP 2.1 specification. It is intended for general use outside of the JSP and JSF specifications as well.

This package contains the classes and interfaces that describe and define the programmatic access to the Expression Language engine. The API is logically partitioned as follows:

EL Context

An important goal of the EL is to ensure it can be used in a variety of environments. It must therefore provide enough flexibility to adapt to the specific requirements of the environment where it is being used.

Class {@link javax.el.ELContext} is what links the EL with the specific environment where it is being used. It provides the mechanism through which all relevant context for creating or evaluating an expression is specified.

Creation of ELContext objects is controlled through the underlying technology. For example, in JSP, the JspContext.getELContext() factory method is used.

Some technologies provide the ability to add an {@link javax.el.ELContextListener} so that applications and frameworks can ensure their own context objects are attached to any newly created ELContext.

Expression Objects

At the core of the Expression Language is the notion of an expression that gets parsed according to the grammar defined by the Expression Language.

There are two types of expressions defined by the EL: value expressions and method expressions. A {@link javax.el.ValueExpression} such as "${customer.name}" can be used either as an rvalue (return the value associated with property name of the model object customer) or as an lvalue (set the value of the property name of the model object customer).

A {@link javax.el.MethodExpression} such as "${handler.process}" makes it possible to invoke a method (process) on a specific model object (handler).

All expression classes extend the base class {@link javax.el.Expression}, making them serializable and forcing them to implement equals() and hashCode(). Morevover, each method on these expression classes that actually evaluates an expression receives a parameter of class {@link javax.el.ELContext}, which provides the context required to evaluate the expression.

Creation of Expressions

An expression is created through the {@link javax.el.ExpressionFactory} class. The factory provides two creation methods; one for each type of expression supported by the EL.

To create an expression, one must provide an {@link javax.el.ELContext}, a string representing the expression, and the expected type (ValueExpression) or signature (MethodExpression). The ELContext provides the context necessary to parse an expression. Specifically, if the expression uses an EL function (for example ${fn:toUpperCase(customer.name)}) or an EL variable, then {@link javax.el.FunctionMapper} and {@link javax.el.VariableMapper} objects must be available within the ELContext so that EL functions and EL variables are properly mapped.

Resolution of Model Objects and their Properties

Through the {@link javax.el.ELResolver} base class, the EL features a pluggable mechanism to resolve model object references as well as properties of these objects.

The EL API provides implementations of ELResolver supporting property resolution for common data types which include arrays ({@link javax.el.ArrayELResolver}), JavaBeans ({@link javax.el.BeanELResolver}), Lists ({@link javax.el.ListELResolver}), Maps ({@link javax.el.MapELResolver}), and ResourceBundles ({@link javax.el.ResourceBundleELResolver}).

Tools can easily obtain more information about resolvable model objects and their resolvable properties by calling method getFeatureDescriptors on the ELResolver. This method exposes objects of type java.beans.FeatureDescriptor, providing all information of interest on top-level model objects as well as their properties.

EL Functions

If an EL expression uses a function (for example ${fn:toUpperCase(customer.name)}), then a {@link javax.el.FunctionMapper} object must also be specified within the ELContext. The FunctionMapper is responsible to map ${prefix:name()} style functions to static methods that can execute the specified functions.

EL Variables

Just like {@link javax.el.FunctionMapper} provides a flexible mechanism to add functions to the EL, {@link javax.el.VariableMapper} provides a flexible mechanism to support the notion of EL variables.

An EL variable does not directly refer to a model object that can then be resolved by an ELResolver. Instead, it refers to an EL expression. The evaluation of that EL expression gives the EL variable its value.

For example, in the following code snippet

<h:inputText value="#{handler.customer.name}"/>
handler refers to a model object that can be resolved by an EL Resolver.

However, in this other example:

<c:forEach var="item" items="#{model.list}">
   <h:inputText value="#{item.name}"/>
</c:forEach>
item is an EL variable because it does not refer directly to a model object. Instead, it refers to another EL expression, namely a specific item in the collection referred to by the EL expression #{model.list}.

Assuming that there are three elements in ${model.list}, this means that for each invocation of <h:inputText>, the following information about item must be preserved in the {@link javax.el.VariableMapper}:

first invocation: item maps to first element in ${model.list}
second invocation: item maps to second element in ${model.list}
third invocation: item maps to third element in ${model.list}

VariableMapper provides the mechanisms required to allow the mapping of an EL variable to the EL expression from which it gets its value.