Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
native-prism.Renderer.c Maven / Gradle / Ivy
/*
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include
#include
#include
#include
#include "Helpers.h"
#include "Renderer.h"
#include "AlphaConsumer.h"
//public final class Renderer implements PathConsumer2D {
// private final class ScanlineIterator {
#define this (*((ScanlineIterator *) pIterator))
static void ScanlineIterator_reset(ScanlineIterator *pIterator,
Renderer *pRenderer);
static void ScanlineIterator_init(ScanlineIterator *pIterator,
Renderer *pRenderer)
{
this.crossings = new_int(INIT_CROSSINGS_SIZE);
this.crossingsSIZE = INIT_CROSSINGS_SIZE;
this.edgePtrs = new_int(INIT_CROSSINGS_SIZE);
this.edgePtrsSIZE = INIT_CROSSINGS_SIZE;
ScanlineIterator_reset(pIterator, pRenderer);
}
static void ScanlineIterator_destroy(ScanlineIterator *pIterator) {
free(this.crossings);
this.crossings = NULL;
this.crossingsSIZE = 0;
free(this.edgePtrs);
this.edgePtrs = NULL;
this.edgePtrsSIZE = 0;
}
static void ScanlineIterator_reset(ScanlineIterator *pIterator,
Renderer *pRenderer)
{
// We don't care if we clip some of the line off with ceil, since
// no scan line crossings will be eliminated (in fact, the ceil is
// the y of the first scan line crossing).
this.nextY = pRenderer->sampleRowMin;
this.edgeCount = 0;
}
static jint ScanlineIterator_next(ScanlineIterator *pIterator, Renderer *pRenderer) {
jint i, ecur;
jint *xings;
// NOTE: make function that convert from y value to bucket idx?
jint cury = this.nextY++;
jint bucket = cury - pRenderer->boundsMinY;
jint count = this.edgeCount;
jint *ptrs = this.edgePtrs;
jfloat *edges = pRenderer->edges;
jint bucketcount = pRenderer->edgeBuckets[bucket*2 + 1];
if ((bucketcount & 0x1) != 0) {
jint newCount = 0;
jint i;
for (i = 0; i < count; i++) {
jint ecur = ptrs[i];
if (edges[ecur+YMAX] > cury) {
ptrs[newCount++] = ecur;
}
}
count = newCount;
}
if (this.edgePtrsSIZE < count + (bucketcount >> 1)) {
jint newSize = (count + (bucketcount >> 1)) * 2;
jint *newPtrs = new_int(newSize);
System_arraycopy(this.edgePtrs, 0, newPtrs, 0, count);
free(this.edgePtrs);
this.edgePtrs = newPtrs;
this.edgePtrsSIZE = newSize;
}
ptrs = this.edgePtrs;
for (ecur = pRenderer->edgeBuckets[bucket*2];
ecur != 0;
ecur = (jint) edges[ecur+NEXT])
{
ptrs[count++] = --ecur;
// REMIND: Adjust start Y if necessary
}
this.edgePtrs = ptrs;
this.edgeCount = count;
// if ((count & 0x1) != 0) {
// System.out.println("ODD NUMBER OF EDGES!!!!");
// }
xings = this.crossings;
if (this.crossingsSIZE < count) {
free(this.crossings);
this.crossings = xings = new_int(this.edgePtrsSIZE);
this.crossingsSIZE = this.edgePtrsSIZE;
}
for (i = 0; i < count; i++) {
jint ecur = ptrs[i];
jfloat curx = edges[ecur+CURX];
jint cross = ((jint) curx) << 1;
jint j;
edges[ecur+CURX] = curx + edges[ecur+SLOPE];
if (edges[ecur+OR] > 0) {
cross |= 1;
}
j = i;
while (--j >= 0) {
jint jcross = xings[j];
if (jcross <= cross) {
break;
}
xings[j+1] = jcross;
ptrs[j+1] = ptrs[j];
}
xings[j+1] = cross;
ptrs[j+1] = ecur;
}
return count;
}
static jboolean ScanlineIterator_hasNext(ScanlineIterator *pIterator, Renderer *pRenderer) {
return this.nextY < pRenderer->sampleRowMax;
}
static jint ScanlineIterator_curY(ScanlineIterator *pIterator) {
return this.nextY - 1;
}
#undef this
#define this (*((Renderer *) pRenderer))
//////////////////////////////////////////////////////////////////////////////
// EDGE LIST
//////////////////////////////////////////////////////////////////////////////
// NOTE(maybe): very tempting to use fixed point here. A lot of opportunities
// for shifts and just removing certain operations altogether.
// each bucket is a linked list. this method adds eptr to the
// start "bucket"th linked list.
static void addEdgeToBucket(PathConsumer *pRenderer, const jint eptr, const jint bucket) {
// we could implement this in terms of insertEdge, but this is a special
// case, so we optimize a bit.
this.edges[eptr+NEXT] = (jfloat) this.edgeBuckets[bucket*2];
this.edgeBuckets[bucket*2] = eptr + 1;
this.edgeBuckets[bucket*2 + 1] += 2;
}
static void addLine(PathConsumer *pRenderer,
jfloat x1, jfloat y1,
jfloat x2, jfloat y2);
// Flattens using adaptive forward differencing. This only carries out
// one iteration of the AFD loop. All it does is update AFD variables (i.e.
// X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
static void quadBreakIntoLinesAndAdd(PathConsumer *pRenderer,
jfloat x0, jfloat y0,
const Curve c,
const jfloat x2, const jfloat y2)
{
jfloat ddx, ddy, dx, dy;
const jfloat QUAD_DEC_BND = 32;
const jint countlg = 4;
jint count = 1 << countlg;
jint countsq = count * count;
jfloat maxDD = Math_max(c.dbx / countsq, c.dby / countsq);
while (maxDD > QUAD_DEC_BND) {
maxDD /= 4;
count <<= 1;
}
countsq = count * count;
ddx = c.dbx / countsq;
ddy = c.dby / countsq;
dx = c.bx / countsq + c.cx / count;
dy = c.by / countsq + c.cy / count;
while (count-- > 1) {
jfloat x1 = x0 + dx;
jfloat y1 = y0 + dy;
dx += ddx;
dy += ddy;
addLine(pRenderer, x0, y0, x1, y1);
x0 = x1;
y0 = y1;
}
addLine(pRenderer, x0, y0, x2, y2);
}
// x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
// using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
// numerical errors, and our callers already have the exact values.
// Another alternative would be to pass all the control points, and call c.set
// here, but then too many numbers are passed around.
static void curveBreakIntoLinesAndAdd(PathConsumer *pRenderer,
jfloat x0, jfloat y0,
const Curve c,
const jfloat x3, const jfloat y3)
{
const jint countlg = 3;
jint count = 1 << countlg;
jfloat x1, y1;
// the dx and dy refer to forward differencing variables, not the last
// coefficients of the "points" polynomial
jfloat dddx, dddy, ddx, ddy, dx, dy;
dddx = 2.0f * c.dax / (1 << (3 * countlg));
dddy = 2.0f * c.day / (1 << (3 * countlg));
ddx = dddx + c.dbx / (1 << (2 * countlg));
ddy = dddy + c.dby / (1 << (2 * countlg));
dx = c.ax / (1 << (3 * countlg)) + c.bx / (1 << (2 * countlg)) + c.cx / (1 << countlg);
dy = c.ay / (1 << (3 * countlg)) + c.by / (1 << (2 * countlg)) + c.cy / (1 << countlg);
// we use x0, y0 to walk the line
x1 = x0;
y1 = y0;
while (count > 0) {
while (fabs(ddx) > DEC_BND || fabs(ddy) > DEC_BND) {
dddx /= 8;
dddy /= 8;
ddx = ddx/4 - dddx;
ddy = ddy/4 - dddy;
dx = (dx - ddx) / 2;
dy = (dy - ddy) / 2;
count <<= 1;
}
// can only do this on even "count" values, because we must divide count by 2
while (count % 2 == 0 && fabs(dx) <= INC_BND && fabs(dy) <= INC_BND) {
dx = 2 * dx + ddx;
dy = 2 * dy + ddy;
ddx = 4 * (ddx + dddx);
ddy = 4 * (ddy + dddy);
dddx = 8 * dddx;
dddy = 8 * dddy;
count >>= 1;
}
count--;
if (count > 0) {
x1 += dx;
dx += ddx;
ddx += dddx;
y1 += dy;
dy += ddy;
ddy += dddy;
} else {
x1 = x3;
y1 = y3;
}
addLine(pRenderer, x0, y0, x1, y1);
x0 = x1;
y0 = y1;
}
}
static void addLine(PathConsumer *pRenderer,
jfloat x1, jfloat y1,
jfloat x2, jfloat y2)
{
jfloat or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
jint firstCrossing, lastCrossing;
jfloat slope;
jint ptr, bucketIdx;
if (y2 < y1) {
or = y2; // no need to declare a temp variable. We have or.
y2 = y1;
y1 = or;
or = x2;
x2 = x1;
x1 = or;
or = 0;
}
firstCrossing = Math_max((jint) ceil(y1), this.boundsMinY);
lastCrossing = Math_min((jint) ceil(y2), this.boundsMaxY);
if (firstCrossing >= lastCrossing) {
return;
}
if (firstCrossing < this.sampleRowMin) { this.sampleRowMin = firstCrossing; }
if (lastCrossing > this.sampleRowMax) { this.sampleRowMax = lastCrossing; }
slope = (x2 - x1) / (y2 - y1);
if (slope > 0) { // <==> x1 < x2
if (x1 < this.edgeMinX) { this.edgeMinX = x1; }
if (x2 > this.edgeMaxX) { this.edgeMaxX = x2; }
} else {
if (x2 < this.edgeMinX) { this.edgeMinX = x2; }
if (x1 > this.edgeMaxX) { this.edgeMaxX = x1; }
}
ptr = this.numEdges * SIZEOF_EDGE;
if (this.edgesSIZE < ptr + SIZEOF_EDGE) {
jint newSize = (ptr + SIZEOF_EDGE) * 2;
jfloat *newEdges = new_float(newSize);
System_arraycopy(this.edges, 0, newEdges, 0, ptr);
free(this.edges);
this.edges = newEdges;
this.edgesSIZE = newSize;
}
this.numEdges++;
this.edges[ptr+OR] = or;
this.edges[ptr+CURX] = x1 + (firstCrossing - y1) * slope;
this.edges[ptr+SLOPE] = slope;
this.edges[ptr+YMAX] = (jfloat) lastCrossing;
bucketIdx = firstCrossing - this.boundsMinY;
addEdgeToBucket(pRenderer, ptr, bucketIdx);
this.edgeBuckets[(lastCrossing - this.boundsMinY)*2 + 1] |= 1;
}
// END EDGE LIST
//////////////////////////////////////////////////////////////////////////////
static MoveToFunc Renderer_moveTo;
static LineToFunc Renderer_lineTo;
static QuadToFunc Renderer_quadTo;
static CurveToFunc Renderer_curveTo;
static ClosePathFunc Renderer_closePath;
static PathDoneFunc Renderer_pathDone;
// Antialiasing
static jint SUBPIXEL_LG_POSITIONS_X;
static jint SUBPIXEL_LG_POSITIONS_Y;
static jint SUBPIXEL_POSITIONS_X;
static jint SUBPIXEL_POSITIONS_Y;
static jint SUBPIXEL_MASK_X;
static jint SUBPIXEL_MASK_Y;
//static jint MAX_AA_ALPHA;
static jbyte *alphaMap;
static void setMaxAlpha(jint maxalpha);
void Renderer_setup(jint subpixelLgPositionsX, jint subpixelLgPositionsY) {
SUBPIXEL_LG_POSITIONS_X = subpixelLgPositionsX;
SUBPIXEL_LG_POSITIONS_Y = subpixelLgPositionsY;
SUBPIXEL_POSITIONS_X = 1 << (SUBPIXEL_LG_POSITIONS_X);
SUBPIXEL_POSITIONS_Y = 1 << (SUBPIXEL_LG_POSITIONS_Y);
SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
// MAX_AA_ALPHA = (SUBPIXEL_POSITIONS_X * SUBPIXEL_POSITIONS_Y);
setMaxAlpha((SUBPIXEL_POSITIONS_X * SUBPIXEL_POSITIONS_Y));
}
void Renderer_init(Renderer *pRenderer) {
memset(pRenderer, 0, sizeof(Renderer));
PathConsumer_init(&pRenderer->consumer,
Renderer_moveTo,
Renderer_lineTo,
Renderer_quadTo,
Renderer_curveTo,
Renderer_closePath,
Renderer_pathDone);
}
void Renderer_reset(Renderer *pRenderer,
jint pix_boundsX, jint pix_boundsY,
jint pix_boundsWidth, jint pix_boundsHeight,
jint windingRule)
{
jint numBuckets;
this.windingRule = windingRule;
this.boundsMinX = pix_boundsX * SUBPIXEL_POSITIONS_X;
this.boundsMinY = pix_boundsY * SUBPIXEL_POSITIONS_Y;
this.boundsMaxX = (pix_boundsX + pix_boundsWidth) * SUBPIXEL_POSITIONS_X;
this.boundsMaxY = (pix_boundsY + pix_boundsHeight) * SUBPIXEL_POSITIONS_Y;
this.edgeMinX = BIGGEST_FLOAT;
this.edgeMaxX = -BIGGEST_FLOAT;
this.sampleRowMax = this.boundsMinY;
this.sampleRowMin = this.boundsMaxY;
numBuckets = this.boundsMaxY - this.boundsMinY;
if (this.edgeBuckets == NULL || this.edgeBucketsSIZE < numBuckets*2+2) {
// The last 2 entries are ignored and only used to store unused
// values for segments ending on the last line of the bounds
// so we can avoid having to check the bounds on this array.
this.edgeBuckets = new_int(numBuckets*2 + 2);
this.edgeBucketsSIZE = numBuckets*2 + 2;
} else {
// Only need to fill the first numBuckets*2 entries since the
// last 2 entries are write-only for overflow avoidance only.
Arrays_fill(this.edgeBuckets, 0, numBuckets*2, 0);
}
if (this.edges == NULL) {
this.edges = new_float(SIZEOF_EDGE * 32);
this.edgesSIZE = SIZEOF_EDGE * 32;
}
this.numEdges = 0;
this.pix_sx0 = this.pix_sy0 = this.x0 = this.y0 = 0.0f;
}
void Renderer_destroy(Renderer *pRenderer) {
free(pRenderer->edgeBuckets);
pRenderer->edgeBuckets = NULL;
pRenderer->edgeBucketsSIZE = 0;
free(pRenderer->edges);
pRenderer->edges = NULL;
pRenderer->edgesSIZE = 0;
}
static jfloat tosubpixx(jfloat pix_x) {
return pix_x * SUBPIXEL_POSITIONS_X;
}
static jfloat tosubpixy(jfloat pix_y) {
return pix_y * SUBPIXEL_POSITIONS_Y;
}
static void Renderer_moveTo(PathConsumer *pRenderer,
jfloat pix_x0, jfloat pix_y0)
{
Renderer_closePath(pRenderer);
this.pix_sx0 = pix_x0;
this.pix_sy0 = pix_y0;
this.y0 = tosubpixy(pix_y0);
this.x0 = tosubpixx(pix_x0);
}
static void Renderer_lineTo(PathConsumer *pRenderer,
jfloat pix_x1, jfloat pix_y1)
{
jfloat x1 = tosubpixx(pix_x1);
jfloat y1 = tosubpixy(pix_y1);
addLine(pRenderer, this.x0, this.y0, x1, y1);
this.x0 = x1;
this.y0 = y1;
}
static void Renderer_curveTo(PathConsumer *pRenderer,
jfloat x1, jfloat y1,
jfloat x2, jfloat y2,
jfloat x3, jfloat y3)
{
const jfloat xe = tosubpixx(x3);
const jfloat ye = tosubpixy(y3);
Curve_setcubic(&this.c,
this.x0, this.y0,
tosubpixx(x1), tosubpixy(y1),
tosubpixx(x2), tosubpixy(y2),
xe, ye);
curveBreakIntoLinesAndAdd(pRenderer, this.x0, this.y0, this.c, xe, ye);
this.x0 = xe;
this.y0 = ye;
}
void Renderer_quadTo(PathConsumer *pRenderer,
jfloat x1, jfloat y1,
jfloat x2, jfloat y2)
{
const jfloat xe = tosubpixx(x2);
const jfloat ye = tosubpixy(y2);
Curve_setquad(&this.c,
this.x0, this.y0,
tosubpixx(x1), tosubpixy(y1),
xe, ye);
quadBreakIntoLinesAndAdd(pRenderer, this.x0, this.y0, this.c, xe, ye);
this.x0 = xe;
this.y0 = ye;
}
static void Renderer_closePath(PathConsumer *pRenderer) {
// lineTo expects its input in pixel coordinates.
Renderer_lineTo(pRenderer, this.pix_sx0, this.pix_sy0);
}
static void Renderer_pathDone(PathConsumer *pRenderer) {
Renderer_closePath(pRenderer);
}
static void setAndClearRelativeAlphas(AlphaConsumer *pAC,
jint alphaRow[], jint pix_y,
jint pix_from, jint pix_to);
void Renderer_produceAlphas(Renderer *pRenderer, AlphaConsumer *pAC) {
// ac.setMaxAlpha(MAX_AA_ALPHA);
// Mask to determine the relevant bit of the crossing sum
// 0x1 if EVEN_ODD, all bits if NON_ZERO
jint mask = (this.windingRule == WIND_EVEN_ODD) ? 0x1 : ~0x0;
jint bboxx0, bboxx1;
jint pix_minX, pix_maxX;
jint y;
ScanlineIterator it;
// add 2 to better deal with the last pixel in a pixel row.
jint width = pAC->width;
jint savedAlpha[1024];
jint *alpha;
if (1024 < width+2) {
alpha = new_int(width+2);
} else {
alpha = savedAlpha;
}
Arrays_fill(alpha, 0, width+2, 0);
bboxx0 = pAC->originX << SUBPIXEL_LG_POSITIONS_X;
bboxx1 = bboxx0 + (width << SUBPIXEL_LG_POSITIONS_X);
// Now we iterate through the scanlines. We must tell emitRow the coord
// of the first non-transparent pixel, so we must keep accumulators for
// the first and last pixels of the section of the current pixel row
// that we will emit.
// We also need to accumulate pix_bbox*, but the iterator does it
// for us. We will just get the values from it once this loop is done
pix_maxX = bboxx1 >> SUBPIXEL_LG_POSITIONS_X;
pix_minX = bboxx0 >> SUBPIXEL_LG_POSITIONS_Y;
y = this.boundsMinY; // needs to be declared here so we emit the last row properly.
ScanlineIterator_init(&it, pRenderer);
for ( ; ScanlineIterator_hasNext(&it, pRenderer); ) {
jint numCrossings = ScanlineIterator_next(&it, pRenderer);
jint *crossings = it.crossings;
jint sum, prev;
jint i;
y = ScanlineIterator_curY(&it);
if (numCrossings > 0) {
jint lowx = crossings[0] >> 1;
jint highx = crossings[numCrossings - 1] >> 1;
jint x0 = Math_max(lowx, bboxx0);
jint x1 = Math_min(highx, bboxx1);
pix_minX = Math_min(pix_minX, x0 >> SUBPIXEL_LG_POSITIONS_X);
pix_maxX = Math_max(pix_maxX, x1 >> SUBPIXEL_LG_POSITIONS_X);
}
sum = 0;
prev = bboxx0;
for (i = 0; i < numCrossings; i++) {
jint curxo = crossings[i];
jint curx = curxo >> 1;
jint crorientation = ((curxo & 0x1) << 1) - 1;
if ((sum & mask) != 0) {
jint x0 = Math_max(prev, bboxx0);
jint x1 = Math_min(curx, bboxx1);
if (x0 < x1) {
jint pix_x, pix_xmaxm1;
x0 -= bboxx0; // turn x0, x1 from coords to indices
x1 -= bboxx0; // in the alpha array.
pix_x = x0 >> SUBPIXEL_LG_POSITIONS_X;
pix_xmaxm1 = (x1 - 1) >> SUBPIXEL_LG_POSITIONS_X;
if (pix_x == pix_xmaxm1) {
// Start and end in same pixel
alpha[pix_x] += (x1 - x0);
alpha[pix_x+1] -= (x1 - x0);
} else {
jint pix_xmax = x1 >> SUBPIXEL_LG_POSITIONS_X;
alpha[pix_x] += SUBPIXEL_POSITIONS_X - (x0 & SUBPIXEL_MASK_X);
alpha[pix_x+1] += (x0 & SUBPIXEL_MASK_X);
alpha[pix_xmax] -= SUBPIXEL_POSITIONS_X - (x1 & SUBPIXEL_MASK_X);
alpha[pix_xmax+1] -= (x1 & SUBPIXEL_MASK_X);
}
}
}
sum += crorientation;
prev = curx;
}
// even if this last row had no crossings, alpha will be zeroed
// from the last emitRow call. But this doesn't matter because
// maxX < minX, so no row will be emitted to the cache.
if ((y & SUBPIXEL_MASK_Y) == SUBPIXEL_MASK_Y) {
setAndClearRelativeAlphas(pAC, alpha, y >> SUBPIXEL_LG_POSITIONS_Y,
pix_minX, pix_maxX);
pix_maxX = bboxx1 >> SUBPIXEL_LG_POSITIONS_X;
pix_minX = bboxx0 >> SUBPIXEL_LG_POSITIONS_Y;
}
}
// Emit final row.
// Note, if y is on a MASK row then it was already sent above...
if ((y & SUBPIXEL_MASK_Y) < SUBPIXEL_MASK_Y) {
setAndClearRelativeAlphas(pAC, alpha, y >> SUBPIXEL_LG_POSITIONS_Y,
pix_minX, pix_maxX);
}
ScanlineIterator_destroy(&it);
if (alpha != savedAlpha) free (alpha);
}
//@Override
static void setMaxAlpha(jint maxalpha) {
jint i;
alphaMap = malloc(maxalpha+1);
for (i = 0; i <= maxalpha; i++) {
alphaMap[i] = (jbyte) ((i*255 + maxalpha/2)/maxalpha);
}
}
static void setAndClearRelativeAlphas(AlphaConsumer *pAC,
jint alphaRow[], jint pix_y,
jint pix_from, jint pix_to)
{
// System.out.println("setting row "+(pix_y - y)+
// " out of "+width+" x "+height);
jint w = pAC->width;
jint off = (pix_y - pAC->originY) * w;
jbyte *out = pAC->alphas;
jint a = 0;
jint i;
for (i = 0; i < w; i++) {
a += alphaRow[i];
alphaRow[i] = 0;
out[off+i] = alphaMap[a];
}
}
static jint getSubpixMinX(Renderer *pRenderer) {
jint sampleColMin = (jint) ceil(this.edgeMinX);
if (sampleColMin < this.boundsMinX) sampleColMin = this.boundsMinX;
return sampleColMin;
}
static jint getSubpixMaxX(Renderer *pRenderer) {
jint sampleColMax = (jint) ceil(this.edgeMaxX);
if (sampleColMax > this.boundsMaxX) sampleColMax = this.boundsMaxX;
return sampleColMax;
}
static jint getSubpixMinY(Renderer *pRenderer) {
return this.sampleRowMin;
}
static jint getSubpixMaxY(Renderer *pRenderer) {
return this.sampleRowMax;
}
static jint getOutpixMinX(Renderer *pRenderer) {
return (getSubpixMinX(pRenderer) >> SUBPIXEL_LG_POSITIONS_X);
}
static jint getOutpixMaxX(Renderer *pRenderer) {
return (getSubpixMaxX(pRenderer) + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
}
static jint getOutpixMinY(Renderer *pRenderer) {
return (this.sampleRowMin >> SUBPIXEL_LG_POSITIONS_Y);
}
static jint getOutpixMaxY(Renderer *pRenderer) {
return (this.sampleRowMax + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
}
void Renderer_getOutputBounds(Renderer *pRenderer, jint bounds[]) {
bounds[0] = getOutpixMinX(pRenderer);
bounds[1] = getOutpixMinY(pRenderer);
bounds[2] = getOutpixMaxX(pRenderer);
bounds[3] = getOutpixMaxY(pRenderer);
}