com.sun.javafx.geom.transform.AffineBase Maven / Gradle / Ivy
Show all versions of openjfx-78-backport Show documentation
/*
* Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.javafx.geom.transform;
import com.sun.javafx.geom.BaseBounds;
import com.sun.javafx.geom.Path2D;
import com.sun.javafx.geom.Point2D;
import com.sun.javafx.geom.RectBounds;
import com.sun.javafx.geom.Rectangle;
import com.sun.javafx.geom.Shape;
import com.sun.javafx.geom.Vec3d;
/**
*
*/
public abstract class AffineBase extends BaseTransform {
/**
* This constant is used for the internal state variable to indicate
* that no calculations need to be performed and that the source
* coordinates only need to be copied to their destinations to
* complete the transformation equation of this transform.
* @see #APPLY_TRANSLATE
* @see #APPLY_SCALE
* @see #APPLY_SHEAR
* @see #APPLY_3D
* @see #state
*/
protected static final int APPLY_IDENTITY = 0;
/**
* This constant is used for the internal state variable to indicate
* that the translation components of the matrix (m02 and m12) need
* to be added to complete the transformation equation of this transform.
* @see #APPLY_IDENTITY
* @see #APPLY_SCALE
* @see #APPLY_SHEAR
* @see #APPLY_3D
* @see #state
*/
protected static final int APPLY_TRANSLATE = 1;
/**
* This constant is used for the internal state variable to indicate
* that the scaling components of the matrix (m00 and m11) need
* to be factored in to complete the transformation equation of
* this transform. If the APPLY_SHEAR bit is also set then it
* indicates that the scaling components are not both 0.0. If the
* APPLY_SHEAR bit is not also set then it indicates that the
* scaling components are not both 1.0. If neither the APPLY_SHEAR
* nor the APPLY_SCALE bits are set then the scaling components
* are both 1.0, which means that the x and y components contribute
* to the transformed coordinate, but they are not multiplied by
* any scaling factor.
* @see #APPLY_IDENTITY
* @see #APPLY_TRANSLATE
* @see #APPLY_SHEAR
* @see #APPLY_3D
* @see #state
*/
protected static final int APPLY_SCALE = 2;
/**
* This constant is used for the internal state variable to indicate
* that the shearing components of the matrix (m01 and m10) need
* to be factored in to complete the transformation equation of this
* transform. The presence of this bit in the state variable changes
* the interpretation of the APPLY_SCALE bit as indicated in its
* documentation.
* @see #APPLY_IDENTITY
* @see #APPLY_TRANSLATE
* @see #APPLY_SCALE
* @see #APPLY_3D
* @see #state
*/
protected static final int APPLY_SHEAR = 4;
/**
* This constant is used for the internal state variable to indicate
* that the 3D (Z) components of the matrix (m*z and mz*) need
* to be factored in to complete the transformation equation of this
* transform.
* @see #APPLY_IDENTITY
* @see #APPLY_TRANSLATE
* @see #APPLY_SCALE
* @see #APPLY_SHEAR
* @see #state
*/
protected static final int APPLY_3D = 8;
/*
* The following mask can be used to extract the 2D state constants from
* a state variable for cases where we know we can ignore the 3D matrix
* elements (such as in the 2D coordinate transform methods).
*/
protected static final int APPLY_2D_MASK = (APPLY_TRANSLATE | APPLY_SCALE | APPLY_SHEAR);
protected static final int APPLY_2D_DELTA_MASK = (APPLY_SCALE | APPLY_SHEAR);
/*
* For methods which combine together the state of two separate
* transforms and dispatch based upon the combination, these constants
* specify how far to shift one of the states so that the two states
* are mutually non-interfering and provide constants for testing the
* bits of the shifted (HI) state. The methods in this class use
* the convention that the state of "this" transform is unshifted and
* the state of the "other" or "argument" transform is shifted (HI).
*/
protected static final int HI_SHIFT = 4;
protected static final int HI_IDENTITY = APPLY_IDENTITY << HI_SHIFT;
protected static final int HI_TRANSLATE = APPLY_TRANSLATE << HI_SHIFT;
protected static final int HI_SCALE = APPLY_SCALE << HI_SHIFT;
protected static final int HI_SHEAR = APPLY_SHEAR << HI_SHIFT;
protected static final int HI_3D = APPLY_3D << HI_SHIFT;
/**
* The X coordinate scaling element of the 3x3
* affine transformation matrix.
*/
protected double mxx;
/**
* The Y coordinate shearing element of the 3x3
* affine transformation matrix.
*/
protected double myx;
/**
* The X coordinate shearing element of the 3x3
* affine transformation matrix.
*/
protected double mxy;
/**
* The Y coordinate scaling element of the 3x3
* affine transformation matrix.
*/
protected double myy;
/**
* The X coordinate of the translation element of the
* 3x3 affine transformation matrix.
*/
protected double mxt;
/**
* The Y coordinate of the translation element of the
* 3x3 affine transformation matrix.
*/
protected double myt;
/**
* This field keeps track of which components of the matrix need to
* be applied when performing a transformation.
* @see #APPLY_IDENTITY
* @see #APPLY_TRANSLATE
* @see #APPLY_SCALE
* @see #APPLY_SHEAR
* @see #APPLY_3D
*/
protected transient int state;
/**
* This field caches the current transformation type of the matrix.
* @see #TYPE_IDENTITY
* @see #TYPE_TRANSLATION
* @see #TYPE_UNIFORM_SCALE
* @see #TYPE_GENERAL_SCALE
* @see #TYPE_FLIP
* @see #TYPE_QUADRANT_ROTATION
* @see #TYPE_GENERAL_ROTATION
* @see #TYPE_GENERAL_TRANSFORM
* @see #TYPE_UNKNOWN
* @see #getType
*/
protected transient int type;
/*
* Convenience method used internally to throw exceptions when
* a case was forgotten in a switch statement.
*/
protected static void stateError() {
throw new InternalError("missing case in transform state switch");
}
/**
* Manually recalculates the state of the transform when the matrix
* changes too much to predict the effects on the state.
* The following table specifies what the various settings of the
* state field say about the values of the corresponding matrix
* element fields.
* Note that the rules governing the SCALE fields are slightly
* different depending on whether the SHEAR flag is also set.
*
* SCALE SHEAR TRANSLATE
* m00/m11 m01/m10 m02/m12
*
* IDENTITY 1.0 0.0 0.0
* TRANSLATE (TR) 1.0 0.0 not both 0.0
* SCALE (SC) not both 1.0 0.0 0.0
* TR | SC not both 1.0 0.0 not both 0.0
* SHEAR (SH) 0.0 not both 0.0 0.0
* TR | SH 0.0 not both 0.0 not both 0.0
* SC | SH not both 0.0 not both 0.0 0.0
* TR | SC | SH not both 0.0 not both 0.0 not both 0.0
*
*/
protected void updateState() {
updateState2D();
}
/*
* This variant of the method is for cases where we know the 3D elements
* are set to identity...
*/
protected void updateState2D() {
if (mxy == 0.0 && myx == 0.0) {
if (mxx == 1.0 && myy == 1.0) {
if (mxt == 0.0 && myt == 0.0) {
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
} else {
state = APPLY_TRANSLATE;
type = TYPE_TRANSLATION;
}
} else {
if (mxt == 0.0 && myt == 0.0) {
state = APPLY_SCALE;
} else {
state = (APPLY_SCALE | APPLY_TRANSLATE);
}
type = TYPE_UNKNOWN;
}
} else {
if (mxx == 0.0 && myy == 0.0) {
if (mxt == 0.0 && myt == 0.0) {
state = APPLY_SHEAR;
} else {
state = (APPLY_SHEAR | APPLY_TRANSLATE);
}
} else {
if (mxt == 0.0 && myt == 0.0) {
state = (APPLY_SHEAR | APPLY_SCALE);
} else {
state = (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE);
}
}
type = TYPE_UNKNOWN;
}
}
public int getType() {
if (type == TYPE_UNKNOWN) {
updateState(); // TODO: Is this really needed? (RT-26884)
if (type == TYPE_UNKNOWN) {
type = calculateType();
}
}
return type;
}
protected int calculateType() {
int ret = ((state & APPLY_3D) == 0) ? TYPE_IDENTITY : TYPE_AFFINE_3D;
boolean sgn0, sgn1;
switch (state & APPLY_2D_MASK) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
ret |= TYPE_TRANSLATION;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
if (mxx * mxy + myx * myy != 0) {
// Transformed unit vectors are not perpendicular...
ret |= TYPE_GENERAL_TRANSFORM;
break;
}
sgn0 = (mxx >= 0.0);
sgn1 = (myy >= 0.0);
if (sgn0 == sgn1) {
// sgn(mxx) == sgn(myy) therefore sgn(mxy) == -sgn(myx)
// This is the "unflipped" (right-handed) state
if (mxx != myy || mxy != -myx) {
ret |= (TYPE_GENERAL_ROTATION | TYPE_GENERAL_SCALE);
} else if (mxx * myy - mxy * myx != 1.0) {
ret |= (TYPE_GENERAL_ROTATION | TYPE_UNIFORM_SCALE);
} else {
ret |= TYPE_GENERAL_ROTATION;
}
} else {
// sgn(mxx) == -sgn(myy) therefore sgn(mxy) == sgn(myx)
// This is the "flipped" (left-handed) state
if (mxx != -myy || mxy != myx) {
ret |= (TYPE_GENERAL_ROTATION |
TYPE_FLIP |
TYPE_GENERAL_SCALE);
} else if (mxx * myy - mxy * myx != 1.0) {
ret |= (TYPE_GENERAL_ROTATION |
TYPE_FLIP |
TYPE_UNIFORM_SCALE);
} else {
ret |= (TYPE_GENERAL_ROTATION | TYPE_FLIP);
}
}
break;
case (APPLY_SHEAR | APPLY_TRANSLATE):
ret |= TYPE_TRANSLATION;
/* NOBREAK */
case (APPLY_SHEAR):
sgn0 = (mxy >= 0.0);
sgn1 = (myx >= 0.0);
if (sgn0 != sgn1) {
// Different signs - simple 90 degree rotation
if (mxy != -myx) {
ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE);
} else if (mxy != 1.0 && mxy != -1.0) {
ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE);
} else {
ret |= TYPE_QUADRANT_ROTATION;
}
} else {
// Same signs - 90 degree rotation plus an axis flip too
if (mxy == myx) {
ret |= (TYPE_QUADRANT_ROTATION |
TYPE_FLIP |
TYPE_UNIFORM_SCALE);
} else {
ret |= (TYPE_QUADRANT_ROTATION |
TYPE_FLIP |
TYPE_GENERAL_SCALE);
}
}
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
ret |= TYPE_TRANSLATION;
/* NOBREAK */
case (APPLY_SCALE):
sgn0 = (mxx >= 0.0);
sgn1 = (myy >= 0.0);
if (sgn0 == sgn1) {
if (sgn0) {
// Both scaling factors non-negative - simple scale
// Note: APPLY_SCALE implies M0, M1 are not both 1
if (mxx == myy) {
ret |= TYPE_UNIFORM_SCALE;
} else {
ret |= TYPE_GENERAL_SCALE;
}
} else {
// Both scaling factors negative - 180 degree rotation
if (mxx != myy) {
ret |= (TYPE_QUADRANT_ROTATION | TYPE_GENERAL_SCALE);
} else if (mxx != -1.0) {
ret |= (TYPE_QUADRANT_ROTATION | TYPE_UNIFORM_SCALE);
} else {
ret |= TYPE_QUADRANT_ROTATION;
}
}
} else {
// Scaling factor signs different - flip about some axis
if (mxx == -myy) {
if (mxx == 1.0 || mxx == -1.0) {
ret |= TYPE_FLIP;
} else {
ret |= (TYPE_FLIP | TYPE_UNIFORM_SCALE);
}
} else {
ret |= (TYPE_FLIP | TYPE_GENERAL_SCALE);
}
}
break;
case (APPLY_TRANSLATE):
ret |= TYPE_TRANSLATION;
break;
case (APPLY_IDENTITY):
break;
}
return ret;
}
/**
* Returns the X coordinate scaling element (mxx) of the 3x3
* affine transformation matrix.
* @return a double value that is the X coordinate of the scaling
* element of the affine transformation matrix.
* @see #getMatrix
*/
@Override
public double getMxx() {
return mxx;
}
/**
* Returns the Y coordinate scaling element (myy) of the 3x3
* affine transformation matrix.
* @return a double value that is the Y coordinate of the scaling
* element of the affine transformation matrix.
* @see #getMatrix
*/
@Override
public double getMyy() {
return myy;
}
/**
* Returns the X coordinate shearing element (mxy) of the 3x3
* affine transformation matrix.
* @return a double value that is the X coordinate of the shearing
* element of the affine transformation matrix.
* @see #getMatrix
*/
@Override
public double getMxy() {
return mxy;
}
/**
* Returns the Y coordinate shearing element (myx) of the 3x3
* affine transformation matrix.
* @return a double value that is the Y coordinate of the shearing
* element of the affine transformation matrix.
* @see #getMatrix
*/
@Override
public double getMyx() {
return myx;
}
/**
* Returns the X coordinate of the translation element (mxt) of the
* 3x3 affine transformation matrix.
* @return a double value that is the X coordinate of the translation
* element of the affine transformation matrix.
* @see #getMatrix
*/
@Override
public double getMxt() {
return mxt;
}
/**
* Returns the Y coordinate of the translation element (myt) of the
* 3x3 affine transformation matrix.
* @return a double value that is the Y coordinate of the translation
* element of the affine transformation matrix.
* @see #getMatrix
*/
@Override
public double getMyt() {
return myt;
}
/**
* Returns true
if this Affine2D
is
* an identity transform.
* @return true
if this Affine2D
is
* an identity transform; false
otherwise.
*/
public boolean isIdentity() {
return (state == APPLY_IDENTITY || (getType() == TYPE_IDENTITY));
}
@Override
public boolean isTranslateOrIdentity() {
return (state <= APPLY_TRANSLATE || (getType() <= TYPE_TRANSLATION));
}
@Override
public boolean is2D() {
return (state < APPLY_3D || getType() <= TYPE_AFFINE2D_MASK);
}
/**
* Returns the determinant of the matrix representation of the transform.
* The determinant is useful both to determine if the transform can
* be inverted and to get a single value representing the
* combined X and Y scaling of the transform.
*
* If the determinant is non-zero, then this transform is
* invertible and the various methods that depend on the inverse
* transform do not need to throw a
* {@link NoninvertibleTransformException}.
* If the determinant is zero then this transform can not be
* inverted since the transform maps all input coordinates onto
* a line or a point.
* If the determinant is near enough to zero then inverse transform
* operations might not carry enough precision to produce meaningful
* results.
*
* If this transform represents a uniform scale, as indicated by
* the getType
method then the determinant also
* represents the square of the uniform scale factor by which all of
* the points are expanded from or contracted towards the origin.
* If this transform represents a non-uniform scale or more general
* transform then the determinant is not likely to represent a
* value useful for any purpose other than determining if inverse
* transforms are possible.
*
* Mathematically, the determinant is calculated using the formula:
*
* | mxx mxy mxt |
* | myx myy myt | = mxx * myy - mxy * myx
* | 0 0 1 |
*
*
* @return the determinant of the matrix used to transform the
* coordinates.
* @see #getType
* @see #createInverse
* @see #inverseTransform
* @see #TYPE_UNIFORM_SCALE
*/
public double getDeterminant() {
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
return mxx * myy - mxy * myx;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
return -(mxy * myx);
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
return mxx * myy;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
return 1.0;
}
}
/**
* Resets the 3D (Z) components of the matrix to identity settings
* (if they are present).
* This is a NOP unless the transform is Affine3D in which case it
* needs to reset its added fields.
*/
protected abstract void reset3Delements();
/**
* Resets this transform to the Identity transform.
*/
public void setToIdentity() {
mxx = myy = 1.0;
myx = mxy = mxt = myt = 0.0;
reset3Delements();
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
}
/**
* Sets this transform to the matrix specified by the 6
* double precision values.
*
* @param mxx the X coordinate scaling element of the 3x3 matrix
* @param myx the Y coordinate shearing element of the 3x3 matrix
* @param mxy the X coordinate shearing element of the 3x3 matrix
* @param myy the Y coordinate scaling element of the 3x3 matrix
* @param mxt the X coordinate translation element of the 3x3 matrix
* @param myt the Y coordinate translation element of the 3x3 matrix
*/
public void setTransform(double mxx, double myx,
double mxy, double myy,
double mxt, double myt) {
this.mxx = mxx;
this.myx = myx;
this.mxy = mxy;
this.myy = myy;
this.mxt = mxt;
this.myt = myt;
reset3Delements();
updateState2D();
}
/**
* Sets this transform to a shearing transformation.
* The matrix representing this transform becomes:
*
* [ 1 shx 0 ]
* [ shy 1 0 ]
* [ 0 0 1 ]
*
* @param shx the multiplier by which coordinates are shifted in the
* direction of the positive X axis as a factor of their Y coordinate
* @param shy the multiplier by which coordinates are shifted in the
* direction of the positive Y axis as a factor of their X coordinate
*/
public void setToShear(double shx, double shy) {
mxx = 1.0;
mxy = shx;
myx = shy;
myy = 1.0;
mxt = 0.0;
myt = 0.0;
reset3Delements();
if (shx != 0.0 || shy != 0.0) {
state = (APPLY_SHEAR | APPLY_SCALE);
type = TYPE_UNKNOWN;
} else {
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
}
}
public Point2D transform(Point2D pt) {
return transform(pt, pt);
}
/**
* Transforms the specified ptSrc
and stores the result
* in ptDst
.
* If ptDst
is null
, a new {@link Point2D}
* object is allocated and then the result of the transformation is
* stored in this object.
* In either case, ptDst
, which contains the
* transformed point, is returned for convenience.
* If ptSrc
and ptDst
are the same
* object, the input point is correctly overwritten with
* the transformed point.
* @param ptSrc the specified Point2D
to be transformed
* @param ptDst the specified Point2D
that stores the
* result of transforming ptSrc
* @return the ptDst
after transforming
* ptSrc
and stroring the result in ptDst
.
*/
public Point2D transform(Point2D ptSrc, Point2D ptDst) {
if (ptDst == null) {
ptDst = new Point2D();
}
// Copy source coords into local variables in case src == dst
double x = ptSrc.x;
double y = ptSrc.y;
// double z = 0.0
// Note that this method also works for 3D transforms since the
// mxz and myz matrix elements get multiplied by z (0.0) and the
// mzx, mzy, mzz, and mzt elements only get used to calculate
// the resulting Z coordinate, which we drop (ignore).
switch (state & APPLY_2D_MASK) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
ptDst.setLocation((float)(x * mxx + y * mxy + mxt),
(float)(x * myx + y * myy + myt));
return ptDst;
case (APPLY_SHEAR | APPLY_SCALE):
ptDst.setLocation((float)(x * mxx + y * mxy),
(float)(x * myx + y * myy));
return ptDst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
ptDst.setLocation((float)(y * mxy + mxt),
(float)(x * myx + myt));
return ptDst;
case (APPLY_SHEAR):
ptDst.setLocation((float)(y * mxy), (float)(x * myx));
return ptDst;
case (APPLY_SCALE | APPLY_TRANSLATE):
ptDst.setLocation((float)(x * mxx + mxt), (float)(y * myy + myt));
return ptDst;
case (APPLY_SCALE):
ptDst.setLocation((float)(x * mxx), (float)(y * myy));
return ptDst;
case (APPLY_TRANSLATE):
ptDst.setLocation((float)(x + mxt), (float)(y + myt));
return ptDst;
case (APPLY_IDENTITY):
ptDst.setLocation((float) x, (float) y);
return ptDst;
}
/* NOTREACHED */
}
public Vec3d transform(Vec3d src, Vec3d dst) {
if (dst == null) {
dst = new Vec3d();
}
// Copy source coords into local variables in case src == dst
double x = src.x;
double y = src.y;
double z = src.z;
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
dst.x = x * mxx + y * mxy + mxt;
dst.y = x * myx + y * myy + myt;
dst.z = z;
return dst;
case (APPLY_SHEAR | APPLY_SCALE):
dst.x = x * mxx + y * mxy;
dst.y = x * myx + y * myy;
dst.z = z;
return dst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
dst.x = y * mxy + mxt;
dst.y = x * myx + myt;
dst.z = z;
return dst;
case (APPLY_SHEAR):
dst.x = y * mxy;
dst.y = x * myx;
dst.z = z;
return dst;
case (APPLY_SCALE | APPLY_TRANSLATE):
dst.x = x * mxx + mxt;
dst.y = y * myy + myt;
dst.z = z;
return dst;
case (APPLY_SCALE):
dst.x = x * mxx;
dst.y = y * myy;
dst.z = z;
return dst;
case (APPLY_TRANSLATE):
dst.x = x + mxt;
dst.y = y + myt;
dst.z = z;
return dst;
case (APPLY_IDENTITY):
dst.x = x;
dst.y = y;
dst.z = z;
return dst;
}
/* NOTREACHED */
}
/**
* Transforms the specified src
vector and stores the result
* in dst
vector, without applying the translation elements.
* If dst
is null
, a new {@link Vec3d}
* object is allocated and then the result of the transformation is
* stored in this object.
* In either case, dst
, which contains the
* transformed vector, is returned for convenience.
* If src
and dst
are the same
* object, the input vector is correctly overwritten with
* the transformed vector.
* @param src the specified Vec3d
to be transformed
* @param dst the specified Vec3d
that stores the
* result of transforming src
* @return the dst
vector after transforming
* src
and storing the result in dst
.
* @since JavaFX 8.0
*/
public Vec3d deltaTransform(Vec3d src, Vec3d dst) {
if (dst == null) {
dst = new Vec3d();
}
// Copy source coords into local variables in case src == dst
double x = src.x;
double y = src.y;
double z = src.z;
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
dst.x = x * mxx + y * mxy ;
dst.y = x * myx + y * myy;
dst.z = z;
return dst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
dst.x = y * mxy;
dst.y = x * myx;
dst.z = z;
return dst;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
dst.x = x * mxx;
dst.y = y * myy;
dst.z = z;
return dst;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
dst.x = x;
dst.y = y;
dst.z = z;
return dst;
}
/* NOTREACHED */
}
private BaseBounds transform2DBounds(RectBounds src, RectBounds dst) {
switch (state & APPLY_2D_MASK) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
double x1 = src.getMinX();
double y1 = src.getMinY();
double x2 = src.getMaxX();
double y2 = src.getMaxY();
dst.setBoundsAndSort((float) (x1 * mxx + y1 * mxy),
(float) (x1 * myx + y1 * myy),
(float) (x2 * mxx + y2 * mxy),
(float) (x2 * myx + y2 * myy));
dst.add((float) (x1 * mxx + y2 * mxy),
(float) (x1 * myx + y2 * myy));
dst.add((float) (x2 * mxx + y1 * mxy),
(float) (x2 * myx + y1 * myy));
dst.setBounds((float) (dst.getMinX() + mxt),
(float) (dst.getMinY() + myt),
(float) (dst.getMaxX() + mxt),
(float) (dst.getMaxY() + myt));
break;
case (APPLY_SHEAR | APPLY_TRANSLATE):
dst.setBoundsAndSort((float) (src.getMinY() * mxy + mxt),
(float) (src.getMinX() * myx + myt),
(float) (src.getMaxY() * mxy + mxt),
(float) (src.getMaxX() * myx + myt));
break;
case (APPLY_SHEAR):
dst.setBoundsAndSort((float) (src.getMinY() * mxy),
(float) (src.getMinX() * myx),
(float) (src.getMaxY() * mxy),
(float) (src.getMaxX() * myx));
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
dst.setBoundsAndSort((float) (src.getMinX() * mxx + mxt),
(float) (src.getMinY() * myy + myt),
(float) (src.getMaxX() * mxx + mxt),
(float) (src.getMaxY() * myy + myt));
break;
case (APPLY_SCALE):
dst.setBoundsAndSort((float) (src.getMinX() * mxx),
(float) (src.getMinY() * myy),
(float) (src.getMaxX() * mxx),
(float) (src.getMaxY() * myy));
break;
case (APPLY_TRANSLATE):
dst.setBounds((float) (src.getMinX() + mxt),
(float) (src.getMinY() + myt),
(float) (src.getMaxX() + mxt),
(float) (src.getMaxY() + myt));
break;
case (APPLY_IDENTITY):
if (src != dst) {
dst.setBounds(src);
}
break;
}
return dst;
}
// Note: Only use this method if src or dst is a 3D bounds
private BaseBounds transform3DBounds(BaseBounds src, BaseBounds dst) {
switch (state & APPLY_2D_MASK) {
default:
stateError();
/* NOTREACHED */
// Note: Assuming mxz = myz = mzx = mzy = mzt 0
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
double x1 = src.getMinX();
double y1 = src.getMinY();
double z1 = src.getMinZ();
double x2 = src.getMaxX();
double y2 = src.getMaxY();
double z2 = src.getMaxZ();
dst.setBoundsAndSort((float) (x1 * mxx + y1 * mxy),
(float) (x1 * myx + y1 * myy),
(float) z1,
(float) (x2 * mxx + y2 * mxy),
(float) (x2 * myx + y2 * myy),
(float) z2);
dst.add((float) (x1 * mxx + y2 * mxy),
(float) (x1 * myx + y2 * myy), 0);
dst.add((float) (x2 * mxx + y1 * mxy),
(float) (x2 * myx + y1 * myy), 0);
dst.deriveWithNewBounds((float) (dst.getMinX() + mxt),
(float) (dst.getMinY() + myt),
(float) dst.getMinZ(),
(float) (dst.getMaxX() + mxt),
(float) (dst.getMaxY() + myt),
(float) dst.getMaxZ());
break;
case (APPLY_SHEAR | APPLY_TRANSLATE):
dst = dst.deriveWithNewBoundsAndSort((float) (src.getMinY() * mxy + mxt),
(float) (src.getMinX() * myx + myt),
(float) src.getMinZ(),
(float) (src.getMaxY() * mxy + mxt),
(float) (src.getMaxX() * myx + myt),
(float) src.getMaxZ());
break;
case (APPLY_SHEAR):
dst = dst.deriveWithNewBoundsAndSort((float) (src.getMinY() * mxy),
(float) (src.getMinX() * myx),
(float) src.getMinZ(),
(float) (src.getMaxY() * mxy),
(float) (src.getMaxX() * myx),
(float) src.getMaxZ());
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
dst = dst.deriveWithNewBoundsAndSort((float) (src.getMinX() * mxx + mxt),
(float) (src.getMinY() * myy + myt),
(float) src.getMinZ(),
(float) (src.getMaxX() * mxx + mxt),
(float) (src.getMaxY() * myy + myt),
(float) src.getMaxZ());
break;
case (APPLY_SCALE):
dst = dst.deriveWithNewBoundsAndSort((float) (src.getMinX() * mxx),
(float) (src.getMinY() * myy),
(float) src.getMinZ(),
(float) (src.getMaxX() * mxx),
(float) (src.getMaxY() * myy),
(float) src.getMaxZ());
break;
case (APPLY_TRANSLATE):
dst = dst.deriveWithNewBounds((float) (src.getMinX() + mxt),
(float) (src.getMinY() + myt),
(float) src.getMinZ(),
(float) (src.getMaxX() + mxt),
(float) (src.getMaxY() + myt),
(float) src.getMaxZ());
break;
case (APPLY_IDENTITY):
if (src != dst) {
dst = dst.deriveWithNewBounds(src);
}
break;
}
return dst;
}
public BaseBounds transform(BaseBounds src, BaseBounds dst) {
// assert(APPLY_3D was dealt with at a higher level)
if (!src.is2D() || !dst.is2D()) {
return transform3DBounds(src, dst);
}
return transform2DBounds((RectBounds)src, (RectBounds)dst);
}
public void transform(Rectangle src, Rectangle dst) {
// assert(APPLY_3D was dealt with at a higher level)
switch (state & APPLY_2D_MASK) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
RectBounds b = new RectBounds(src);
//TODO: Need to verify that this is a safe cast ... (RT-26885)
b = (RectBounds) transform(b, b);
dst.setBounds(b);
return;
case (APPLY_TRANSLATE):
Translate2D.transform(src, dst, mxt, myt);
return;
case (APPLY_IDENTITY):
if (dst != src) {
dst.setBounds(src);
}
return;
}
}
/**
* Transforms an array of floating point coordinates by this transform.
* The two coordinate array sections can be exactly the same or
* can be overlapping sections of the same array without affecting the
* validity of the results.
* This method ensures that no source coordinates are overwritten by a
* previous operation before they can be transformed.
* The coordinates are stored in the arrays starting at the specified
* offset in the order [x0, y0, x1, y1, ..., xn, yn]
.
* @param srcPts the array containing the source point coordinates.
* Each point is stored as a pair of x, y coordinates.
* @param dstPts the array into which the transformed point coordinates
* are returned. Each point is stored as a pair of x, y
* coordinates.
* @param srcOff the offset to the first point to be transformed
* in the source array
* @param dstOff the offset to the location of the first
* transformed point that is stored in the destination array
* @param numPts the number of points to be transformed
*/
public void transform(float[] srcPts, int srcOff,
float[] dstPts, int dstOff,
int numPts)
{
doTransform(srcPts, srcOff, dstPts, dstOff, numPts,
(this.state & APPLY_2D_MASK));
}
/**
* Transforms an array of relative distance vectors by this
* transform.
* A relative distance vector is transformed without applying the
* translation components of the affine transformation matrix
* using the following equations:
*
* [ x' ] [ m00 m01 (m02) ] [ x ] [ m00x + m01y ]
* [ y' ] = [ m10 m11 (m12) ] [ y ] = [ m10x + m11y ]
* [ (1) ] [ (0) (0) ( 1 ) ] [ (1) ] [ (1) ]
*
* The two coordinate array sections can be exactly the same or
* can be overlapping sections of the same array without affecting the
* validity of the results.
* This method ensures that no source coordinates are
* overwritten by a previous operation before they can be transformed.
* The coordinates are stored in the arrays starting at the indicated
* offset in the order [x0, y0, x1, y1, ..., xn, yn]
.
* @param srcPts the array containing the source distance vectors.
* Each vector is stored as a pair of relative x, y coordinates.
* @param dstPts the array into which the transformed distance vectors
* are returned. Each vector is stored as a pair of relative
* x, y coordinates.
* @param srcOff the offset to the first vector to be transformed
* in the source array
* @param dstOff the offset to the location of the first
* transformed vector that is stored in the destination array
* @param numPts the number of vector coordinate pairs to be
* transformed
*/
public void deltaTransform(float[] srcPts, int srcOff,
float[] dstPts, int dstOff,
int numPts)
{
doTransform(srcPts, srcOff, dstPts, dstOff, numPts,
(this.state & APPLY_2D_DELTA_MASK));
}
private void doTransform(float[] srcPts, int srcOff,
float[] dstPts, int dstOff,
int numPts, int thestate)
{
double Mxx, Mxy, Mxt, Myx, Myy, Myt; // For caching
if (dstPts == srcPts &&
dstOff > srcOff && dstOff < srcOff + numPts * 2)
{
// If the arrays overlap partially with the destination higher
// than the source and we transform the coordinates normally
// we would overwrite some of the later source coordinates
// with results of previous transformations.
// To get around this we use arraycopy to copy the points
// to their final destination with correct overwrite
// handling and then transform them in place in the new
// safer location.
System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
// srcPts = dstPts; // They are known to be equal.
srcOff = dstOff;
}
// Note that this method also works for 3D transforms since the
// mxz and myz matrix elements get multiplied by z (0.0) and the
// mzx, mzy, mzz, and mzt elements only get used to calculate
// the resulting Z coordinate, which we drop (ignore).
switch (thestate) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxy = mxy; Mxt = mxt;
Myx = myx; Myy = myy; Myt = myt;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (float) (Mxx * x + Mxy * y + Mxt);
dstPts[dstOff++] = (float) (Myx * x + Myy * y + Myt);
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
Mxx = mxx; Mxy = mxy;
Myx = myx; Myy = myy;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (float) (Mxx * x + Mxy * y);
dstPts[dstOff++] = (float) (Myx * x + Myy * y);
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
Mxy = mxy; Mxt = mxt;
Myx = myx; Myt = myt;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = (float) (Mxy * srcPts[srcOff++] + Mxt);
dstPts[dstOff++] = (float) (Myx * x + Myt);
}
return;
case (APPLY_SHEAR):
Mxy = mxy; Myx = myx;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = (float) (Mxy * srcPts[srcOff++]);
dstPts[dstOff++] = (float) (Myx * x);
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxt = mxt;
Myy = myy; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (Mxx * srcPts[srcOff++] + Mxt);
dstPts[dstOff++] = (float) (Myy * srcPts[srcOff++] + Myt);
}
return;
case (APPLY_SCALE):
Mxx = mxx; Myy = myy;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (Mxx * srcPts[srcOff++]);
dstPts[dstOff++] = (float) (Myy * srcPts[srcOff++]);
}
return;
case (APPLY_TRANSLATE):
Mxt = mxt; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (srcPts[srcOff++] + Mxt);
dstPts[dstOff++] = (float) (srcPts[srcOff++] + Myt);
}
return;
case (APPLY_IDENTITY):
if (srcPts != dstPts || srcOff != dstOff) {
System.arraycopy(srcPts, srcOff, dstPts, dstOff,
numPts * 2);
}
return;
}
/* NOTREACHED */
}
/**
* Transforms an array of double precision coordinates by this transform.
* The two coordinate array sections can be exactly the same or
* can be overlapping sections of the same array without affecting the
* validity of the results.
* This method ensures that no source coordinates are
* overwritten by a previous operation before they can be transformed.
* The coordinates are stored in the arrays starting at the indicated
* offset in the order [x0, y0, x1, y1, ..., xn, yn]
.
* @param srcPts the array containing the source point coordinates.
* Each point is stored as a pair of x, y coordinates.
* @param dstPts the array into which the transformed point
* coordinates are returned. Each point is stored as a pair of
* x, y coordinates.
* @param srcOff the offset to the first point to be transformed
* in the source array
* @param dstOff the offset to the location of the first
* transformed point that is stored in the destination array
* @param numPts the number of point objects to be transformed
*/
public void transform(double[] srcPts, int srcOff,
double[] dstPts, int dstOff,
int numPts)
{
doTransform(srcPts, srcOff, dstPts, dstOff, numPts,
(this.state & APPLY_2D_MASK));
}
/**
* Transforms an array of relative distance vectors by this
* transform.
* A relative distance vector is transformed without applying the
* translation components of the affine transformation matrix
* using the following equations:
*
* [ x' ] [ m00 m01 (m02) ] [ x ] [ m00x + m01y ]
* [ y' ] = [ m10 m11 (m12) ] [ y ] = [ m10x + m11y ]
* [ (1) ] [ (0) (0) ( 1 ) ] [ (1) ] [ (1) ]
*
* The two coordinate array sections can be exactly the same or
* can be overlapping sections of the same array without affecting the
* validity of the results.
* This method ensures that no source coordinates are
* overwritten by a previous operation before they can be transformed.
* The coordinates are stored in the arrays starting at the indicated
* offset in the order [x0, y0, x1, y1, ..., xn, yn]
.
* @param srcPts the array containing the source distance vectors.
* Each vector is stored as a pair of relative x, y coordinates.
* @param dstPts the array into which the transformed distance vectors
* are returned. Each vector is stored as a pair of relative
* x, y coordinates.
* @param srcOff the offset to the first vector to be transformed
* in the source array
* @param dstOff the offset to the location of the first
* transformed vector that is stored in the destination array
* @param numPts the number of vector coordinate pairs to be
* transformed
*/
public void deltaTransform(double[] srcPts, int srcOff,
double[] dstPts, int dstOff,
int numPts)
{
doTransform(srcPts, srcOff, dstPts, dstOff, numPts,
(this.state & APPLY_2D_DELTA_MASK));
}
private void doTransform(double[] srcPts, int srcOff,
double[] dstPts, int dstOff,
int numPts, int thestate)
{
double Mxx, Mxy, Mxt, Myx, Myy, Myt; // For caching
if (dstPts == srcPts &&
dstOff > srcOff && dstOff < srcOff + numPts * 2)
{
// If the arrays overlap partially with the destination higher
// than the source and we transform the coordinates normally
// we would overwrite some of the later source coordinates
// with results of previous transformations.
// To get around this we use arraycopy to copy the points
// to their final destination with correct overwrite
// handling and then transform them in place in the new
// safer location.
System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
// srcPts = dstPts; // They are known to be equal.
srcOff = dstOff;
}
// Note that this method also works for 3D transforms since the
// mxz and myz matrix elements get multiplied by z (0.0) and the
// mzx, mzy, mzz, and mzt elements only get used to calculate
// the resulting Z coordinate, which we drop (ignore).
switch (thestate) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxy = mxy; Mxt = mxt;
Myx = myx; Myy = myy; Myt = myt;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = Mxx * x + Mxy * y + Mxt;
dstPts[dstOff++] = Myx * x + Myy * y + Myt;
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
Mxx = mxx; Mxy = mxy;
Myx = myx; Myy = myy;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = Mxx * x + Mxy * y;
dstPts[dstOff++] = Myx * x + Myy * y;
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
Mxy = mxy; Mxt = mxt;
Myx = myx; Myt = myt;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = Mxy * srcPts[srcOff++] + Mxt;
dstPts[dstOff++] = Myx * x + Myt;
}
return;
case (APPLY_SHEAR):
Mxy = mxy; Myx = myx;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = Mxy * srcPts[srcOff++];
dstPts[dstOff++] = Myx * x;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxt = mxt;
Myy = myy; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = Mxx * srcPts[srcOff++] + Mxt;
dstPts[dstOff++] = Myy * srcPts[srcOff++] + Myt;
}
return;
case (APPLY_SCALE):
Mxx = mxx; Myy = myy;
while (--numPts >= 0) {
dstPts[dstOff++] = Mxx * srcPts[srcOff++];
dstPts[dstOff++] = Myy * srcPts[srcOff++];
}
return;
case (APPLY_TRANSLATE):
Mxt = mxt; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++] + Mxt;
dstPts[dstOff++] = srcPts[srcOff++] + Myt;
}
return;
case (APPLY_IDENTITY):
if (srcPts != dstPts || srcOff != dstOff) {
System.arraycopy(srcPts, srcOff, dstPts, dstOff,
numPts * 2);
}
return;
}
/* NOTREACHED */
}
/**
* Transforms an array of floating point coordinates by this transform
* and stores the results into an array of doubles.
* The coordinates are stored in the arrays starting at the specified
* offset in the order [x0, y0, x1, y1, ..., xn, yn]
.
* @param srcPts the array containing the source point coordinates.
* Each point is stored as a pair of x, y coordinates.
* @param dstPts the array into which the transformed point coordinates
* are returned. Each point is stored as a pair of x, y
* coordinates.
* @param srcOff the offset to the first point to be transformed
* in the source array
* @param dstOff the offset to the location of the first
* transformed point that is stored in the destination array
* @param numPts the number of points to be transformed
*/
public void transform(float[] srcPts, int srcOff,
double[] dstPts, int dstOff,
int numPts) {
double Mxx, Mxy, Mxt, Myx, Myy, Myt; // For caching
// Note that this method also works for 3D transforms since the
// mxz and myz matrix elements get multiplied by z (0.0) and the
// mzx, mzy, mzz, and mzt elements only get used to calculate
// the resulting Z coordinate, which we drop (ignore).
switch (state & APPLY_2D_MASK) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxy = mxy; Mxt = mxt;
Myx = myx; Myy = myy; Myt = myt;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = Mxx * x + Mxy * y + Mxt;
dstPts[dstOff++] = Myx * x + Myy * y + Myt;
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
Mxx = mxx; Mxy = mxy;
Myx = myx; Myy = myy;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = Mxx * x + Mxy * y;
dstPts[dstOff++] = Myx * x + Myy * y;
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
Mxy = mxy; Mxt = mxt;
Myx = myx; Myt = myt;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = Mxy * srcPts[srcOff++] + Mxt;
dstPts[dstOff++] = Myx * x + Myt;
}
return;
case (APPLY_SHEAR):
Mxy = mxy; Myx = myx;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = Mxy * srcPts[srcOff++];
dstPts[dstOff++] = Myx * x;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxt = mxt;
Myy = myy; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = Mxx * srcPts[srcOff++] + Mxt;
dstPts[dstOff++] = Myy * srcPts[srcOff++] + Myt;
}
return;
case (APPLY_SCALE):
Mxx = mxx; Myy = myy;
while (--numPts >= 0) {
dstPts[dstOff++] = Mxx * srcPts[srcOff++];
dstPts[dstOff++] = Myy * srcPts[srcOff++];
}
return;
case (APPLY_TRANSLATE):
Mxt = mxt; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++] + Mxt;
dstPts[dstOff++] = srcPts[srcOff++] + Myt;
}
return;
case (APPLY_IDENTITY):
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++];
dstPts[dstOff++] = srcPts[srcOff++];
}
return;
}
/* NOTREACHED */
}
/**
* Transforms an array of double precision coordinates by this transform
* and stores the results into an array of floats.
* The coordinates are stored in the arrays starting at the specified
* offset in the order [x0, y0, x1, y1, ..., xn, yn]
.
* @param srcPts the array containing the source point coordinates.
* Each point is stored as a pair of x, y coordinates.
* @param dstPts the array into which the transformed point
* coordinates are returned. Each point is stored as a pair of
* x, y coordinates.
* @param srcOff the offset to the first point to be transformed
* in the source array
* @param dstOff the offset to the location of the first
* transformed point that is stored in the destination array
* @param numPts the number of point objects to be transformed
*/
public void transform(double[] srcPts, int srcOff,
float[] dstPts, int dstOff,
int numPts) {
double Mxx, Mxy, Mxt, Myx, Myy, Myt; // For caching
// Note that this method also works for 3D transforms since the
// mxz and myz matrix elements get multiplied by z (0.0) and the
// mzx, mzy, mzz, and mzt elements only get used to calculate
// the resulting Z coordinate, which we drop (ignore).
switch (state & APPLY_2D_MASK) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxy = mxy; Mxt = mxt;
Myx = myx; Myy = myy; Myt = myt;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (float) (Mxx * x + Mxy * y + Mxt);
dstPts[dstOff++] = (float) (Myx * x + Myy * y + Myt);
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
Mxx = mxx; Mxy = mxy;
Myx = myx; Myy = myy;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (float) (Mxx * x + Mxy * y);
dstPts[dstOff++] = (float) (Myx * x + Myy * y);
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
Mxy = mxy; Mxt = mxt;
Myx = myx; Myt = myt;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = (float) (Mxy * srcPts[srcOff++] + Mxt);
dstPts[dstOff++] = (float) (Myx * x + Myt);
}
return;
case (APPLY_SHEAR):
Mxy = mxy; Myx = myx;
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = (float) (Mxy * srcPts[srcOff++]);
dstPts[dstOff++] = (float) (Myx * x);
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxt = mxt;
Myy = myy; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (Mxx * srcPts[srcOff++] + Mxt);
dstPts[dstOff++] = (float) (Myy * srcPts[srcOff++] + Myt);
}
return;
case (APPLY_SCALE):
Mxx = mxx; Myy = myy;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (Mxx * srcPts[srcOff++]);
dstPts[dstOff++] = (float) (Myy * srcPts[srcOff++]);
}
return;
case (APPLY_TRANSLATE):
Mxt = mxt; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (srcPts[srcOff++] + Mxt);
dstPts[dstOff++] = (float) (srcPts[srcOff++] + Myt);
}
return;
case (APPLY_IDENTITY):
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (srcPts[srcOff++]);
dstPts[dstOff++] = (float) (srcPts[srcOff++]);
}
return;
}
/* NOTREACHED */
}
/**
* Inverse transforms the specified ptSrc
and stores the
* result in ptDst
.
* If ptDst
is null
, a new
* Point2D
object is allocated and then the result of the
* transform is stored in this object.
* In either case, ptDst
, which contains the transformed
* point, is returned for convenience.
* If ptSrc
and ptDst
are the same
* object, the input point is correctly overwritten with the
* transformed point.
* @param ptSrc the point to be inverse transformed
* @param ptDst the resulting transformed point
* @return ptDst
, which contains the result of the
* inverse transform.
* @exception NoninvertibleTransformException if the matrix cannot be
* inverted.
*/
public Point2D inverseTransform(Point2D ptSrc, Point2D ptDst)
throws NoninvertibleTransformException
{
if (ptDst == null) {
ptDst = new Point2D();
}
// Copy source coords into local variables in case src == dst
double x = ptSrc.x;
double y = ptSrc.y;
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
x -= mxt;
y -= myt;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
double det = mxx * myy - mxy * myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
ptDst.setLocation((float)((x * myy - y * mxy) / det),
(float)((y * mxx - x * myx) / det));
return ptDst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
x -= mxt;
y -= myt;
/* NOBREAK */
case (APPLY_SHEAR):
if (mxy == 0.0 || myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
ptDst.setLocation((float)(y / myx), (float)(x / mxy));
return ptDst;
case (APPLY_SCALE | APPLY_TRANSLATE):
x -= mxt;
y -= myt;
/* NOBREAK */
case (APPLY_SCALE):
if (mxx == 0.0 || myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
ptDst.setLocation((float)(x / mxx), (float)(y / myy));
return ptDst;
case (APPLY_TRANSLATE):
ptDst.setLocation((float)(x - mxt), (float)(y - myt));
return ptDst;
case (APPLY_IDENTITY):
ptDst.setLocation((float) x, (float) y);
return ptDst;
}
/* NOTREACHED */
}
/**
* Inverse transforms the specified src
and stores the
* result in dst
.
* If dst
is null
, a new
* Vec3d
object is allocated and then the result of the
* transform is stored in this object.
* In either case, dst
, which contains the transformed
* point, is returned for convenience.
* If src
and dst
are the same
* object, the input point is correctly overwritten with the
* transformed point.
* @param src the point to be inverse transformed
* @param dst the resulting transformed point
* @return dst
, which contains the result of the
* inverse transform.
* @exception NoninvertibleTransformException if the matrix cannot be
* inverted.
*/
@Override
public Vec3d inverseTransform(Vec3d src, Vec3d dst)
throws NoninvertibleTransformException
{
if (dst == null) {
dst = new Vec3d();
}
// Copy source coords into local variables in case src == dst
double x = src.x;
double y = src.y;
double z = src.z;
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
x -= mxt;
y -= myt;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
double det = mxx * myy - mxy * myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
dst.set(((x * myy - y * mxy) / det), ((y * mxx - x * myx) / det), z);
return dst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
x -= mxt;
y -= myt;
/* NOBREAK */
case (APPLY_SHEAR):
if (mxy == 0.0 || myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst.set((y / myx), (x / mxy), z);
return dst;
case (APPLY_SCALE | APPLY_TRANSLATE):
x -= mxt;
y -= myt;
/* NOBREAK */
case (APPLY_SCALE):
if (mxx == 0.0 || myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst.set((x / mxx), (y / myy), z);
return dst;
case (APPLY_TRANSLATE):
dst.set((x - mxt), (y - myt), z);
return dst;
case (APPLY_IDENTITY):
dst.set(x, y, z);
return dst;
}
/* NOTREACHED */
}
/**
* Inverse transforms the specified src
vector and stores the
* result in dst
vector (without applying the translation
* elements).
* If dst
is null
, a new
* Vec3d
object is allocated and then the result of the
* transform is stored in this object.
* In either case, dst
, which contains the transformed
* vector, is returned for convenience.
* If src
and dst
are the same
* object, the input vector is correctly overwritten with the
* transformed vector.
* @param src the vector to be inverse transformed
* @param dst the resulting transformed vector
* @return dst
, which contains the result of the
* inverse transform.
* @exception NoninvertibleTransformException if the matrix cannot be
* inverted.
* @since JavaFX 8.0
*/
@Override
public Vec3d inverseDeltaTransform(Vec3d src, Vec3d dst)
throws NoninvertibleTransformException
{
if (dst == null) {
dst = new Vec3d();
}
// Copy source coords into local variables in case src == dst
double x = src.x;
double y = src.y;
double z = src.z;
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
double det = mxx * myy - mxy * myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
dst.set(((x * myy - y * mxy) / det), ((y * mxx - x * myx) / det), z);
return dst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
if (mxy == 0.0 || myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst.set((y / myx), (x / mxy), z);
return dst;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
if (mxx == 0.0 || myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst.set((x / mxx), (y / myy), z);
return dst;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
dst.set(x, y, z);
return dst;
}
/* NOTREACHED */
}
private BaseBounds inversTransform2DBounds(RectBounds src, RectBounds dst)
throws NoninvertibleTransformException
{
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
double det = mxx * myy - mxy * myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
double x1 = src.getMinX() - mxt;
double y1 = src.getMinY() - myt;
double x2 = src.getMaxX() - mxt;
double y2 = src.getMaxY() - myt;
dst.setBoundsAndSort((float) ((x1 * myy - y1 * mxy) / det),
(float) ((y1 * mxx - x1 * myx) / det),
(float) ((x2 * myy - y2 * mxy) / det),
(float) ((y2 * mxx - x2 * myx) / det));
dst.add((float) ((x2 * myy - y1 * mxy) / det),
(float) ((y1 * mxx - x2 * myx) / det));
dst.add((float) ((x1 * myy - y2 * mxy) / det),
(float) ((y2 * mxx - x1 * myx) / det));
return dst;
case (APPLY_SHEAR | APPLY_TRANSLATE):
if (mxy == 0.0 || myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst.setBoundsAndSort((float) ((src.getMinY() - myt) / myx),
(float) ((src.getMinX() - mxt) / mxy),
(float) ((src.getMaxY() - myt) / myx),
(float) ((src.getMaxX() - mxt) / mxy));
break;
case (APPLY_SHEAR):
if (mxy == 0.0 || myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst.setBoundsAndSort((float) (src.getMinY() / myx),
(float) (src.getMinX() / mxy),
(float) (src.getMaxY() / myx),
(float) (src.getMaxX() / mxy));
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
if (mxx == 0.0 || myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst.setBoundsAndSort((float) ((src.getMinX() - mxt) / mxx),
(float) ((src.getMinY() - myt) / myy),
(float) ((src.getMaxX() - mxt) / mxx),
(float) ((src.getMaxY() - myt) / myy));
break;
case (APPLY_SCALE):
if (mxx == 0.0 || myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst.setBoundsAndSort((float) (src.getMinX() / mxx),
(float) (src.getMinY() / myy),
(float) (src.getMaxX() / mxx),
(float) (src.getMaxY() / myy));
break;
case (APPLY_TRANSLATE):
dst.setBounds((float) (src.getMinX() - mxt),
(float) (src.getMinY() - myt),
(float) (src.getMaxX() - mxt),
(float) (src.getMaxY() - myt));
break;
case (APPLY_IDENTITY):
if (dst != src) {
((RectBounds) dst).setBounds((RectBounds) src);
}
break;
}
return dst;
}
// Note: Only use this method if src or dst is a 3D bounds
private BaseBounds inversTransform3DBounds(BaseBounds src, BaseBounds dst)
throws NoninvertibleTransformException
{
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE):
/* NOBREAK */
case (APPLY_SHEAR | APPLY_TRANSLATE):
/* NOBREAK */
case (APPLY_SHEAR):
double det = mxx * myy - mxy * myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "
+ det);
}
double x1 = src.getMinX() - mxt;
double y1 = src.getMinY() - myt;
double z1 = src.getMinZ();
double x2 = src.getMaxX() - mxt;
double y2 = src.getMaxY() - myt;
double z2 = src.getMaxZ();
dst = dst.deriveWithNewBoundsAndSort(
(float) ((x1 * myy - y1 * mxy) / det),
(float) ((y1 * mxx - x1 * myx) / det),
(float) (z1 / det),
(float) ((x2 * myy - y2 * mxy) / det),
(float) ((y2 * mxx - x2 * myx) / det),
(float) (z2 / det));
dst.add((float) ((x2 * myy - y1 * mxy) / det),
(float) ((y1 * mxx - x2 * myx) / det), 0);
dst.add((float) ((x1 * myy - y2 * mxy) / det),
(float) ((y2 * mxx - x1 * myx) / det), 0);
return dst;
case (APPLY_SCALE | APPLY_TRANSLATE):
if (mxx == 0.0 || myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst = dst.deriveWithNewBoundsAndSort((float) ((src.getMinX() - mxt) / mxx),
(float) ((src.getMinY() - myt) / myy),
(float) src.getMinZ(),
(float) ((src.getMaxX() - mxt) / mxx),
(float) ((src.getMaxY() - myt) / myy),
(float) src.getMaxZ());
break;
case (APPLY_SCALE):
if (mxx == 0.0 || myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
dst = dst.deriveWithNewBoundsAndSort((float) (src.getMinX() / mxx),
(float) (src.getMinY() / myy),
(float) src.getMinZ(),
(float) (src.getMaxX() / mxx),
(float) (src.getMaxY() / myy),
(float) src.getMaxZ());
break;
case (APPLY_TRANSLATE):
dst = dst.deriveWithNewBounds((float) (src.getMinX() - mxt),
(float) (src.getMinY() - myt),
(float) src.getMinZ(),
(float) (src.getMaxX() - mxt),
(float) (src.getMaxY() - myt),
(float) src.getMaxZ());
break;
case (APPLY_IDENTITY):
if (dst != src) {
dst = dst.deriveWithNewBounds(src);
}
break;
}
return dst;
}
public BaseBounds inverseTransform(BaseBounds src, BaseBounds dst)
throws NoninvertibleTransformException
{
// assert(APPLY_3D was dealt with at a higher level)
if (!src.is2D() || !dst.is2D()) {
return inversTransform3DBounds(src, dst);
}
return inversTransform2DBounds((RectBounds)src, (RectBounds)dst);
}
public void inverseTransform(Rectangle src, Rectangle dst)
throws NoninvertibleTransformException
{
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
RectBounds b = new RectBounds(src);
//TODO: Need to verify this casting is safe .... (RT-26885)
b = (RectBounds) inverseTransform(b, b);
dst.setBounds(b);
return;
case (APPLY_TRANSLATE):
Translate2D.transform(src, dst, -mxt, -myt);
return;
case (APPLY_IDENTITY):
if (dst != src) {
dst.setBounds(src);
}
return;
}
}
/**
* Inverse transforms an array of single precision coordinates by
* this transform.
* The two coordinate array sections can be exactly the same or
* can be overlapping sections of the same array without affecting the
* validity of the results.
* This method ensures that no source coordinates are
* overwritten by a previous operation before they can be transformed.
* The coordinates are stored in the arrays starting at the specified
* offset in the order [x0, y0, x1, y1, ..., xn, yn]
.
* @param srcPts the array containing the source point coordinates.
* Each point is stored as a pair of x, y coordinates.
* @param dstPts the array into which the transformed point
* coordinates are returned. Each point is stored as a pair of
* x, y coordinates.
* @param srcOff the offset to the first point to be transformed
* in the source array
* @param dstOff the offset to the location of the first
* transformed point that is stored in the destination array
* @param numPts the number of point objects to be transformed
* @exception NoninvertibleTransformException if the matrix cannot be
* inverted.
*/
public void inverseTransform(float[] srcPts, int srcOff,
float[] dstPts, int dstOff,
int numPts)
throws NoninvertibleTransformException
{
doInverseTransform(srcPts, srcOff, dstPts, dstOff, numPts, state);
}
/**
* Inverse transforms an array of single precision relative coordinates by
* this transform.
* The two coordinate array sections can be exactly the same or
* can be overlapping sections of the same array without affecting the
* validity of the results.
* This method ensures that no source coordinates are
* overwritten by a previous operation before they can be transformed.
* The coordinates are stored in the arrays starting at the specified
* offset in the order [x0, y0, x1, y1, ..., xn, yn]
.
* @param srcPts the array containing the relative source coordinates.
* Each point is stored as a pair of x, y coordinates.
* @param dstPts the array into which the relative transformed point
* coordinates are returned. Each point is stored as a pair of
* x, y coordinates.
* @param srcOff the offset to the first point to be transformed
* in the source array
* @param dstOff the offset to the location of the first
* transformed point that is stored in the destination array
* @param numPts the number of point objects to be transformed
* @exception NoninvertibleTransformException if the matrix cannot be
* inverted.
*/
public void inverseDeltaTransform(float[] srcPts, int srcOff,
float[] dstPts, int dstOff,
int numPts)
throws NoninvertibleTransformException
{
doInverseTransform(srcPts, srcOff, dstPts, dstOff, numPts,
state & ~APPLY_TRANSLATE);
}
/**
* Inverse transforms an array of single precision coordinates by
* this transform using the specified state type.
*/
private void doInverseTransform(float[] srcPts, int srcOff,
float[] dstPts, int dstOff,
int numPts, int thestate)
throws NoninvertibleTransformException
{
double Mxx, Mxy, Mxt, Myx, Myy, Myt; // For caching
double det;
if (dstPts == srcPts &&
dstOff > srcOff && dstOff < srcOff + numPts * 2)
{
// If the arrays overlap partially with the destination higher
// than the source and we transform the coordinates normally
// we would overwrite some of the later source coordinates
// with results of previous transformations.
// To get around this we use arraycopy to copy the points
// to their final destination with correct overwrite
// handling and then transform them in place in the new
// safer location.
System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
// srcPts = dstPts; // They are known to be equal.
srcOff = dstOff;
}
// assert(APPLY_3D was dealt with at a higher level)
switch (thestate) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxy = mxy; Mxt = mxt;
Myx = myx; Myy = myy; Myt = myt;
det = Mxx * Myy - Mxy * Myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
while (--numPts >= 0) {
double x = srcPts[srcOff++] - Mxt;
double y = srcPts[srcOff++] - Myt;
dstPts[dstOff++] = (float) ((x * Myy - y * Mxy) / det);
dstPts[dstOff++] = (float) ((y * Mxx - x * Myx) / det);
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
Mxx = mxx; Mxy = mxy;
Myx = myx; Myy = myy;
det = Mxx * Myy - Mxy * Myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (float) ((x * Myy - y * Mxy) / det);
dstPts[dstOff++] = (float) ((y * Mxx - x * Myx) / det);
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
Mxy = mxy; Mxt = mxt;
Myx = myx; Myt = myt;
if (Mxy == 0.0 || Myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
double x = srcPts[srcOff++] - Mxt;
dstPts[dstOff++] = (float) ((srcPts[srcOff++] - Myt) / Myx);
dstPts[dstOff++] = (float) (x / Mxy);
}
return;
case (APPLY_SHEAR):
Mxy = mxy; Myx = myx;
if (Mxy == 0.0 || Myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = (float) (srcPts[srcOff++] / Myx);
dstPts[dstOff++] = (float) (x / Mxy);
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxt = mxt;
Myy = myy; Myt = myt;
if (Mxx == 0.0 || Myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
dstPts[dstOff++] = (float) ((srcPts[srcOff++] - Mxt) / Mxx);
dstPts[dstOff++] = (float) ((srcPts[srcOff++] - Myt) / Myy);
}
return;
case (APPLY_SCALE):
Mxx = mxx; Myy = myy;
if (Mxx == 0.0 || Myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (srcPts[srcOff++] / Mxx);
dstPts[dstOff++] = (float) (srcPts[srcOff++] / Myy);
}
return;
case (APPLY_TRANSLATE):
Mxt = mxt; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = (float) (srcPts[srcOff++] - Mxt);
dstPts[dstOff++] = (float) (srcPts[srcOff++] - Myt);
}
return;
case (APPLY_IDENTITY):
if (srcPts != dstPts || srcOff != dstOff) {
System.arraycopy(srcPts, srcOff, dstPts, dstOff,
numPts * 2);
}
return;
}
/* NOTREACHED */
}
/**
* Inverse transforms an array of double precision coordinates by
* this transform.
* The two coordinate array sections can be exactly the same or
* can be overlapping sections of the same array without affecting the
* validity of the results.
* This method ensures that no source coordinates are
* overwritten by a previous operation before they can be transformed.
* The coordinates are stored in the arrays starting at the specified
* offset in the order [x0, y0, x1, y1, ..., xn, yn]
.
* @param srcPts the array containing the source point coordinates.
* Each point is stored as a pair of x, y coordinates.
* @param dstPts the array into which the transformed point
* coordinates are returned. Each point is stored as a pair of
* x, y coordinates.
* @param srcOff the offset to the first point to be transformed
* in the source array
* @param dstOff the offset to the location of the first
* transformed point that is stored in the destination array
* @param numPts the number of point objects to be transformed
* @exception NoninvertibleTransformException if the matrix cannot be
* inverted.
*/
public void inverseTransform(double[] srcPts, int srcOff,
double[] dstPts, int dstOff,
int numPts)
throws NoninvertibleTransformException
{
double Mxx, Mxy, Mxt, Myx, Myy, Myt; // For caching
double det;
if (dstPts == srcPts &&
dstOff > srcOff && dstOff < srcOff + numPts * 2)
{
// If the arrays overlap partially with the destination higher
// than the source and we transform the coordinates normally
// we would overwrite some of the later source coordinates
// with results of previous transformations.
// To get around this we use arraycopy to copy the points
// to their final destination with correct overwrite
// handling and then transform them in place in the new
// safer location.
System.arraycopy(srcPts, srcOff, dstPts, dstOff, numPts * 2);
// srcPts = dstPts; // They are known to be equal.
srcOff = dstOff;
}
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxy = mxy; Mxt = mxt;
Myx = myx; Myy = myy; Myt = myt;
det = Mxx * Myy - Mxy * Myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
while (--numPts >= 0) {
double x = srcPts[srcOff++] - Mxt;
double y = srcPts[srcOff++] - Myt;
dstPts[dstOff++] = (x * Myy - y * Mxy) / det;
dstPts[dstOff++] = (y * Mxx - x * Myx) / det;
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
Mxx = mxx; Mxy = mxy;
Myx = myx; Myy = myy;
det = Mxx * Myy - Mxy * Myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
while (--numPts >= 0) {
double x = srcPts[srcOff++];
double y = srcPts[srcOff++];
dstPts[dstOff++] = (x * Myy - y * Mxy) / det;
dstPts[dstOff++] = (y * Mxx - x * Myx) / det;
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
Mxy = mxy; Mxt = mxt;
Myx = myx; Myt = myt;
if (Mxy == 0.0 || Myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
double x = srcPts[srcOff++] - Mxt;
dstPts[dstOff++] = (srcPts[srcOff++] - Myt) / Myx;
dstPts[dstOff++] = x / Mxy;
}
return;
case (APPLY_SHEAR):
Mxy = mxy; Myx = myx;
if (Mxy == 0.0 || Myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
double x = srcPts[srcOff++];
dstPts[dstOff++] = srcPts[srcOff++] / Myx;
dstPts[dstOff++] = x / Mxy;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxt = mxt;
Myy = myy; Myt = myt;
if (Mxx == 0.0 || Myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
dstPts[dstOff++] = (srcPts[srcOff++] - Mxt) / Mxx;
dstPts[dstOff++] = (srcPts[srcOff++] - Myt) / Myy;
}
return;
case (APPLY_SCALE):
Mxx = mxx; Myy = myy;
if (Mxx == 0.0 || Myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++] / Mxx;
dstPts[dstOff++] = srcPts[srcOff++] / Myy;
}
return;
case (APPLY_TRANSLATE):
Mxt = mxt; Myt = myt;
while (--numPts >= 0) {
dstPts[dstOff++] = srcPts[srcOff++] - Mxt;
dstPts[dstOff++] = srcPts[srcOff++] - Myt;
}
return;
case (APPLY_IDENTITY):
if (srcPts != dstPts || srcOff != dstOff) {
System.arraycopy(srcPts, srcOff, dstPts, dstOff,
numPts * 2);
}
return;
}
/* NOTREACHED */
}
/**
* Returns a new {@link Shape} object defined by the geometry of the
* specified Shape
after it has been transformed by
* this transform.
* @param pSrc the specified Shape
object to be
* transformed by this transform.
* @return a new Shape
object that defines the geometry
* of the transformed Shape
, or null if {@code pSrc} is null.
*/
public Shape createTransformedShape(Shape s) {
if (s == null) {
return null;
}
return new Path2D(s, this);
}
/**
* Concatenates this transform with a translation transformation.
* This is equivalent to calling concatenate(T), where T is an
* Affine2D
represented by the following matrix:
*
* [ 1 0 tx ]
* [ 0 1 ty ]
* [ 0 0 1 ]
*
* @param tx the distance by which coordinates are translated in the
* X axis direction
* @param ty the distance by which coordinates are translated in the
* Y axis direction
*/
public void translate(double tx, double ty) {
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
mxt = tx * mxx + ty * mxy + mxt;
myt = tx * myx + ty * myy + myt;
if (mxt == 0.0 && myt == 0.0) {
state = APPLY_SHEAR | APPLY_SCALE;
if (type != TYPE_UNKNOWN) {
type &= ~TYPE_TRANSLATION;
}
}
return;
case (APPLY_SHEAR | APPLY_SCALE):
mxt = tx * mxx + ty * mxy;
myt = tx * myx + ty * myy;
if (mxt != 0.0 || myt != 0.0) {
state = APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE;
type |= TYPE_TRANSLATION;
}
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
mxt = ty * mxy + mxt;
myt = tx * myx + myt;
if (mxt == 0.0 && myt == 0.0) {
state = APPLY_SHEAR;
if (type != TYPE_UNKNOWN) {
type &= ~TYPE_TRANSLATION;
}
}
return;
case (APPLY_SHEAR):
mxt = ty * mxy;
myt = tx * myx;
if (mxt != 0.0 || myt != 0.0) {
state = APPLY_SHEAR | APPLY_TRANSLATE;
type |= TYPE_TRANSLATION;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
mxt = tx * mxx + mxt;
myt = ty * myy + myt;
if (mxt == 0.0 && myt == 0.0) {
state = APPLY_SCALE;
if (type != TYPE_UNKNOWN) {
type &= ~TYPE_TRANSLATION;
}
}
return;
case (APPLY_SCALE):
mxt = tx * mxx;
myt = ty * myy;
if (mxt != 0.0 || myt != 0.0) {
state = APPLY_SCALE | APPLY_TRANSLATE;
type |= TYPE_TRANSLATION;
}
return;
case (APPLY_TRANSLATE):
mxt = tx + mxt;
myt = ty + myt;
if (mxt == 0.0 && myt == 0.0) {
state = APPLY_IDENTITY;
type = TYPE_IDENTITY;
}
return;
case (APPLY_IDENTITY):
mxt = tx;
myt = ty;
if (tx != 0.0 || ty != 0.0) {
state = APPLY_TRANSLATE;
type = TYPE_TRANSLATION;
}
return;
}
}
// Utility methods to optimize rotate methods.
// These tables translate the flags during predictable quadrant
// rotations where the shear and scale values are swapped and negated.
private static final int rot90conversion[] = {
/* IDENTITY => */ APPLY_SHEAR,
/* TRANSLATE (TR) => */ APPLY_SHEAR | APPLY_TRANSLATE,
/* SCALE (SC) => */ APPLY_SHEAR,
/* SC | TR => */ APPLY_SHEAR | APPLY_TRANSLATE,
/* SHEAR (SH) => */ APPLY_SCALE,
/* SH | TR => */ APPLY_SCALE | APPLY_TRANSLATE,
/* SH | SC => */ APPLY_SHEAR | APPLY_SCALE,
/* SH | SC | TR => */ APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE,
};
protected final void rotate90() {
double M0 = mxx;
mxx = mxy;
mxy = -M0;
M0 = myx;
myx = myy;
myy = -M0;
int newstate = rot90conversion[this.state];
if ((newstate & (APPLY_SHEAR | APPLY_SCALE)) == APPLY_SCALE &&
mxx == 1.0 && myy == 1.0)
{
newstate -= APPLY_SCALE;
}
this.state = newstate;
type = TYPE_UNKNOWN;
}
protected final void rotate180() {
mxx = -mxx;
myy = -myy;
int oldstate = this.state;
if ((oldstate & (APPLY_SHEAR)) != 0) {
// If there was a shear, then this rotation has no
// effect on the state.
mxy = -mxy;
myx = -myx;
} else {
// No shear means the SCALE state may toggle when
// m00 and m11 are negated.
if (mxx == 1.0 && myy == 1.0) {
this.state = oldstate & ~APPLY_SCALE;
} else {
this.state = oldstate | APPLY_SCALE;
}
}
type = TYPE_UNKNOWN;
}
protected final void rotate270() {
double M0 = mxx;
mxx = -mxy;
mxy = M0;
M0 = myx;
myx = -myy;
myy = M0;
int newstate = rot90conversion[this.state];
if ((newstate & (APPLY_SHEAR | APPLY_SCALE)) == APPLY_SCALE &&
mxx == 1.0 && myy == 1.0)
{
newstate -= APPLY_SCALE;
}
this.state = newstate;
type = TYPE_UNKNOWN;
}
/**
* Concatenates this transform with a rotation transformation.
* This is equivalent to calling concatenate(R), where R is an
* Affine2D
represented by the following matrix:
*
* [ cos(theta) -sin(theta) 0 ]
* [ sin(theta) cos(theta) 0 ]
* [ 0 0 1 ]
*
* Rotating by a positive angle theta rotates points on the positive
* X axis toward the positive Y axis.
* Note also the discussion of
* Handling 90-Degree Rotations
* above.
* @param theta the angle of rotation measured in radians
*/
public void rotate(double theta) {
// assert(APPLY_3D was dealt with at a higher level)
double sin = Math.sin(theta);
if (sin == 1.0) {
rotate90();
} else if (sin == -1.0) {
rotate270();
} else {
double cos = Math.cos(theta);
if (cos == -1.0) {
rotate180();
} else if (cos != 1.0) {
double M0, M1;
M0 = mxx;
M1 = mxy;
mxx = cos * M0 + sin * M1;
mxy = -sin * M0 + cos * M1;
M0 = myx;
M1 = myy;
myx = cos * M0 + sin * M1;
myy = -sin * M0 + cos * M1;
updateState2D();
}
}
}
/**
* Concatenates this transform with a scaling transformation.
* This is equivalent to calling concatenate(S), where S is an
* Affine2D
represented by the following matrix:
*
* [ sx 0 0 ]
* [ 0 sy 0 ]
* [ 0 0 1 ]
*
* @param sx the factor by which coordinates are scaled along the
* X axis direction
* @param sy the factor by which coordinates are scaled along the
* Y axis direction
*/
public void scale(double sx, double sy) {
int mystate = this.state;
// assert(APPLY_3D was dealt with at a higher level)
switch (mystate) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
mxx *= sx;
myy *= sy;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
mxy *= sy;
myx *= sx;
if (mxy == 0 && myx == 0) {
mystate &= APPLY_TRANSLATE;
if (mxx == 1.0 && myy == 1.0) {
this.type = (mystate == APPLY_IDENTITY
? TYPE_IDENTITY
: TYPE_TRANSLATION);
} else {
mystate |= APPLY_SCALE;
this.type = TYPE_UNKNOWN;
}
this.state = mystate;
}
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
mxx *= sx;
myy *= sy;
if (mxx == 1.0 && myy == 1.0) {
this.state = (mystate &= APPLY_TRANSLATE);
this.type = (mystate == APPLY_IDENTITY
? TYPE_IDENTITY
: TYPE_TRANSLATION);
} else {
this.type = TYPE_UNKNOWN;
}
return;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
mxx = sx;
myy = sy;
if (sx != 1.0 || sy != 1.0) {
this.state = mystate | APPLY_SCALE;
this.type = TYPE_UNKNOWN;
}
return;
}
}
/**
* Concatenates this transform with a shearing transformation.
* This is equivalent to calling concatenate(SH), where SH is an
* Affine2D
represented by the following matrix:
*
* [ 1 shx 0 ]
* [ shy 1 0 ]
* [ 0 0 1 ]
*
* @param shx the multiplier by which coordinates are shifted in the
* direction of the positive X axis as a factor of their Y coordinate
* @param shy the multiplier by which coordinates are shifted in the
* direction of the positive Y axis as a factor of their X coordinate
*/
public void shear(double shx, double shy) {
int mystate = this.state;
// assert(APPLY_3D was dealt with at a higher level)
switch (mystate) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SHEAR | APPLY_SCALE):
double M0, M1;
M0 = mxx;
M1 = mxy;
mxx = M0 + M1 * shy;
mxy = M0 * shx + M1;
M0 = myx;
M1 = myy;
myx = M0 + M1 * shy;
myy = M0 * shx + M1;
updateState2D();
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
mxx = mxy * shy;
myy = myx * shx;
if (mxx != 0.0 || myy != 0.0) {
this.state = mystate | APPLY_SCALE;
}
this.type = TYPE_UNKNOWN;
return;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
mxy = mxx * shx;
myx = myy * shy;
if (mxy != 0.0 || myx != 0.0) {
this.state = mystate | APPLY_SHEAR;
}
this.type = TYPE_UNKNOWN;
return;
case (APPLY_TRANSLATE):
case (APPLY_IDENTITY):
mxy = shx;
myx = shy;
if (mxy != 0.0 || myx != 0.0) {
this.state = mystate | APPLY_SCALE | APPLY_SHEAR;
this.type = TYPE_UNKNOWN;
}
return;
}
}
/**
* Concatenates a BaseTransform
Tx
to
* this Affine2D
Cx in the most commonly useful
* way to provide a new user space
* that is mapped to the former user space by Tx
.
* Cx is updated to perform the combined transformation.
* Transforming a point p by the updated transform Cx' is
* equivalent to first transforming p by Tx
and then
* transforming the result by the original transform Cx like this:
* Cx'(p) = Cx(Tx(p))
* In matrix notation, if this transform Cx is
* represented by the matrix [this] and Tx
is represented
* by the matrix [Tx] then this method does the following:
*
* [this] = [this] x [Tx]
*
* @param Tx the BaseTransform
object to be
* concatenated with this Affine2D
object.
* @see #preConcatenate
*/
public void concatenate(BaseTransform Tx) {
switch (Tx.getDegree()) {
case IDENTITY:
return;
case TRANSLATE_2D:
translate(Tx.getMxt(), Tx.getMyt());
return;
case AFFINE_2D:
break;
default:
if (!Tx.is2D()) {
degreeError(Degree.AFFINE_2D);
}
// TODO: Optimize - we need an AffineBase below due to the cast
// For now, there is no other kind of transform that will get
// here so we are already essentially optimal, but if we have
// a different type of transform that reaches here we should
// try to avoid this garbage... (RT-26884)
if (!(Tx instanceof AffineBase)) {
Tx = new Affine2D(Tx);
}
break;
}
double M0, M1;
double Txx, Txy, Tyx, Tyy;
double Txt, Tyt;
int mystate = state;
AffineBase at = (AffineBase) Tx;
int txstate = at.state;
switch ((txstate << HI_SHIFT) | mystate) {
/* ---------- Tx == IDENTITY cases ---------- */
case (HI_IDENTITY | APPLY_IDENTITY):
case (HI_IDENTITY | APPLY_TRANSLATE):
case (HI_IDENTITY | APPLY_SCALE):
case (HI_IDENTITY | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_IDENTITY | APPLY_SHEAR):
case (HI_IDENTITY | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE):
case (HI_IDENTITY | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
return;
/* ---------- this == IDENTITY cases ---------- */
case (HI_SHEAR | HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY):
mxy = at.mxy;
myx = at.myx;
/* NOBREAK */
case (HI_SCALE | HI_TRANSLATE | APPLY_IDENTITY):
mxx = at.mxx;
myy = at.myy;
/* NOBREAK */
case (HI_TRANSLATE | APPLY_IDENTITY):
mxt = at.mxt;
myt = at.myt;
state = txstate;
type = at.type;
return;
case (HI_SHEAR | HI_SCALE | APPLY_IDENTITY):
mxy = at.mxy;
myx = at.myx;
/* NOBREAK */
case (HI_SCALE | APPLY_IDENTITY):
mxx = at.mxx;
myy = at.myy;
state = txstate;
type = at.type;
return;
case (HI_SHEAR | HI_TRANSLATE | APPLY_IDENTITY):
mxt = at.mxt;
myt = at.myt;
/* NOBREAK */
case (HI_SHEAR | APPLY_IDENTITY):
mxy = at.mxy;
myx = at.myx;
mxx = myy = 0.0;
state = txstate;
type = at.type;
return;
/* ---------- Tx == TRANSLATE cases ---------- */
case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_TRANSLATE | APPLY_SHEAR | APPLY_SCALE):
case (HI_TRANSLATE | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_TRANSLATE | APPLY_SHEAR):
case (HI_TRANSLATE | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_TRANSLATE | APPLY_SCALE):
case (HI_TRANSLATE | APPLY_TRANSLATE):
translate(at.mxt, at.myt);
return;
/* ---------- Tx == SCALE cases ---------- */
case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_SHEAR | APPLY_SCALE):
case (HI_SCALE | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_SHEAR):
case (HI_SCALE | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SCALE | APPLY_SCALE):
case (HI_SCALE | APPLY_TRANSLATE):
scale(at.mxx, at.myy);
return;
/* ---------- Tx == SHEAR cases ---------- */
case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_SHEAR | APPLY_SCALE):
Txy = at.mxy; Tyx = at.myx;
M0 = mxx;
mxx = mxy * Tyx;
mxy = M0 * Txy;
M0 = myx;
myx = myy * Tyx;
myy = M0 * Txy;
type = TYPE_UNKNOWN;
return;
case (HI_SHEAR | APPLY_SHEAR | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_SHEAR):
mxx = mxy * at.myx;
mxy = 0.0;
myy = myx * at.mxy;
myx = 0.0;
state = mystate ^ (APPLY_SHEAR | APPLY_SCALE);
type = TYPE_UNKNOWN;
return;
case (HI_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
case (HI_SHEAR | APPLY_SCALE):
mxy = mxx * at.mxy;
mxx = 0.0;
myx = myy * at.myx;
myy = 0.0;
state = mystate ^ (APPLY_SHEAR | APPLY_SCALE);
type = TYPE_UNKNOWN;
return;
case (HI_SHEAR | APPLY_TRANSLATE):
mxx = 0.0;
mxy = at.mxy;
myx = at.myx;
myy = 0.0;
state = APPLY_TRANSLATE | APPLY_SHEAR;
type = TYPE_UNKNOWN;
return;
}
// If Tx has more than one attribute, it is not worth optimizing
// all of those cases...
Txx = at.mxx; Txy = at.mxy; Txt = at.mxt;
Tyx = at.myx; Tyy = at.myy; Tyt = at.myt;
switch (mystate) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE):
state = mystate | txstate;
/* NOBREAK */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
M0 = mxx;
M1 = mxy;
mxx = Txx * M0 + Tyx * M1;
mxy = Txy * M0 + Tyy * M1;
mxt += Txt * M0 + Tyt * M1;
M0 = myx;
M1 = myy;
myx = Txx * M0 + Tyx * M1;
myy = Txy * M0 + Tyy * M1;
myt += Txt * M0 + Tyt * M1;
type = TYPE_UNKNOWN;
return;
case (APPLY_SHEAR | APPLY_TRANSLATE):
case (APPLY_SHEAR):
M0 = mxy;
mxx = Tyx * M0;
mxy = Tyy * M0;
mxt += Tyt * M0;
M0 = myx;
myx = Txx * M0;
myy = Txy * M0;
myt += Txt * M0;
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
case (APPLY_SCALE):
M0 = mxx;
mxx = Txx * M0;
mxy = Txy * M0;
mxt += Txt * M0;
M0 = myy;
myx = Tyx * M0;
myy = Tyy * M0;
myt += Tyt * M0;
break;
case (APPLY_TRANSLATE):
mxx = Txx;
mxy = Txy;
mxt += Txt;
myx = Tyx;
myy = Tyy;
myt += Tyt;
state = txstate | APPLY_TRANSLATE;
type = TYPE_UNKNOWN;
return;
}
updateState2D();
}
/**
* Sets this transform to the inverse of itself.
* The inverse transform Tx' of this transform Tx
* maps coordinates transformed by Tx back
* to their original coordinates.
* In other words, Tx'(Tx(p)) = p = Tx(Tx'(p)).
*
* If this transform maps all coordinates onto a point or a line
* then it will not have an inverse, since coordinates that do
* not lie on the destination point or line will not have an inverse
* mapping.
* The getDeterminant
method can be used to determine if this
* transform has no inverse, in which case an exception will be
* thrown if the invert
method is called.
* @see #getDeterminant
* @exception NoninvertibleTransformException
* if the matrix cannot be inverted.
*/
public void invert()
throws NoninvertibleTransformException
{
double Mxx, Mxy, Mxt;
double Myx, Myy, Myt;
double det;
// assert(APPLY_3D was dealt with at a higher level)
switch (state) {
default:
stateError();
/* NOTREACHED */
case (APPLY_SHEAR | APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxy = mxy; Mxt = mxt;
Myx = myx; Myy = myy; Myt = myt;
det = Mxx * Myy - Mxy * Myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
mxx = Myy / det;
myx = -Myx / det;
mxy = -Mxy / det;
myy = Mxx / det;
mxt = (Mxy * Myt - Myy * Mxt) / det;
myt = (Myx * Mxt - Mxx * Myt) / det;
break;
case (APPLY_SHEAR | APPLY_SCALE):
Mxx = mxx; Mxy = mxy;
Myx = myx; Myy = myy;
det = Mxx * Myy - Mxy * Myx;
if (det == 0 || Math.abs(det) <= Double.MIN_VALUE) {
throw new NoninvertibleTransformException("Determinant is "+
det);
}
mxx = Myy / det;
myx = -Myx / det;
mxy = -Mxy / det;
myy = Mxx / det;
// m02 = 0.0;
// m12 = 0.0;
break;
case (APPLY_SHEAR | APPLY_TRANSLATE):
Mxy = mxy; Mxt = mxt;
Myx = myx; Myt = myt;
if (Mxy == 0.0 || Myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
// m00 = 0.0;
myx = 1.0 / Mxy;
mxy = 1.0 / Myx;
// m11 = 0.0;
mxt = -Myt / Myx;
myt = -Mxt / Mxy;
break;
case (APPLY_SHEAR):
Mxy = mxy;
Myx = myx;
if (Mxy == 0.0 || Myx == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
// m00 = 0.0;
myx = 1.0 / Mxy;
mxy = 1.0 / Myx;
// m11 = 0.0;
// m02 = 0.0;
// m12 = 0.0;
break;
case (APPLY_SCALE | APPLY_TRANSLATE):
Mxx = mxx; Mxt = mxt;
Myy = myy; Myt = myt;
if (Mxx == 0.0 || Myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
mxx = 1.0 / Mxx;
// m10 = 0.0;
// m01 = 0.0;
myy = 1.0 / Myy;
mxt = -Mxt / Mxx;
myt = -Myt / Myy;
break;
case (APPLY_SCALE):
Mxx = mxx;
Myy = myy;
if (Mxx == 0.0 || Myy == 0.0) {
throw new NoninvertibleTransformException("Determinant is 0");
}
mxx = 1.0 / Mxx;
// m10 = 0.0;
// m01 = 0.0;
myy = 1.0 / Myy;
// m02 = 0.0;
// m12 = 0.0;
break;
case (APPLY_TRANSLATE):
// m00 = 1.0;
// m10 = 0.0;
// m01 = 0.0;
// m11 = 1.0;
mxt = -mxt;
myt = -myt;
break;
case (APPLY_IDENTITY):
// m00 = 1.0;
// m10 = 0.0;
// m01 = 0.0;
// m11 = 1.0;
// m02 = 0.0;
// m12 = 0.0;
break;
}
}
}