All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.sun.javafx.sg.prism.ShapeEvaluator Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.javafx.sg.prism;

import com.sun.javafx.geom.FlatteningPathIterator;
import com.sun.javafx.geom.Path2D;
import com.sun.javafx.geom.IllegalPathStateException;
import com.sun.javafx.geom.PathIterator;
import com.sun.javafx.geom.Point2D;
import com.sun.javafx.geom.Rectangle;
import com.sun.javafx.geom.RectBounds;
import com.sun.javafx.geom.Shape;
import com.sun.javafx.geom.transform.BaseTransform;
import java.util.Vector;

/**
 * A {@link KeyFrame} {@link Evaluator} for {@link Shape} objects.
 * This {@code Evaluator} can be used to morph between the geometries
 * of two relatively arbitrary shapes with the only restrictions being
 * that the two different numbers of subpaths or two shapes with
 * disparate winding rules may not blend together in a pleasing
 * manner.
 * The ShapeEvaluator will do the best job it can if the shapes do
 * not match in winding rule or number of subpaths, but the geometry
 * of the shapes may need to be adjusted by other means to make the
 * shapes more like each other for best aesthetic effect.
 * 

* Note that the process of comparing two geometries and finding similar * structures between them to blend for the morphing operation can be * expensive. * Instances of {@code ShapeEvaluator} will properly perform the necessary * geometric analysis of their arguments on every method call and attempt * to cache the information so that they can operate more quickly if called * multiple times in a row on the same pair of {@code Shape} objects. * As a result attempting to mutate a {@code Shape} object that is stored * in one of their keyframes may not have any effect if the associated * {@code ShapeEvaluator} has already cached the geometry. * Also, it is advisable to use different instances of {@code ShapeEvaluator} * for every pair of keyframes being morphed so that the cached information * can be reused as much as possible. *

* An example of proper usage: *

 *     SGShape s = ...;
 *     Shape s0 = ...;
 *     Shape s1 = ...;
 *     Shape s2 = ...;
 *     KeyFrame k0 = KeyFrame.create(0.0f, s0, new ShapeEvaluator());
 *     KeyFrame k1 = KeyFrame.create(0.6f, s1, new ShapeEvaluator());
 *     KeyFrame k2 = KeyFrame.create(1.0f, s2, new ShapeEvaluator());
 *     KeyFrames morphFrames = KeyFrames.create(s, "shape", k0, k1, k2);
 *     Clip.create(5000, 1, morphFrames).start();
 * 
* */ class ShapeEvaluator { private Shape savedv0; private Shape savedv1; private Geometry geom0; private Geometry geom1; public Shape evaluate(Shape v0, Shape v1, float fraction) { if (savedv0 != v0 || savedv1 != v1) { if (savedv0 == v1 && savedv1 == v0) { // Just swap the geometries Geometry gtmp = geom0; geom0 = geom1; geom1 = gtmp; } else { recalculate(v0, v1); } savedv0 = v0; savedv1 = v1; } return getShape(fraction); } private void recalculate(Shape v0, Shape v1) { geom0 = new Geometry(v0); geom1 = new Geometry(v1); float tvals0[] = geom0.getTvals(); float tvals1[] = geom1.getTvals(); float masterTvals[] = mergeTvals(tvals0, tvals1); geom0.setTvals(masterTvals); geom1.setTvals(masterTvals); } private Shape getShape(float fraction) { return new MorphedShape(geom0, geom1, fraction); } private static float[] mergeTvals(float tvals0[], float tvals1[]) { int count = sortTvals(tvals0, tvals1, null); float newtvals[] = new float[count]; sortTvals(tvals0, tvals1, newtvals); return newtvals; } private static int sortTvals(float tvals0[], float tvals1[], float newtvals[]) { int i0 = 0; int i1 = 0; int numtvals = 0; while (i0 < tvals0.length && i1 < tvals1.length) { float t0 = tvals0[i0]; float t1 = tvals1[i1]; if (t0 <= t1) { if (newtvals != null) newtvals[numtvals] = t0; i0++; } if (t1 <= t0) { if (newtvals != null) newtvals[numtvals] = t1; i1++; } numtvals++; } return numtvals; } private static float interp(float v0, float v1, float t) { return (v0 + ((v1 - v0) * t)); } private static class Geometry { static final float THIRD = (1f / 3f); static final float MIN_LEN = 0.001f; float bezierCoords[]; int numCoords; int windingrule; float myTvals[]; public Geometry(Shape s) { // Multiple of 6 plus 2 more for initial moveto bezierCoords = new float[20]; PathIterator pi = s.getPathIterator(null); windingrule = pi.getWindingRule(); if (pi.isDone()) { // We will have 1 segment and it will be all zeros // It will have 8 coordinates (2 for moveto, 6 for cubic) numCoords = 8; } float coords[] = new float[6]; int type = pi.currentSegment(coords); pi.next(); if (type != PathIterator.SEG_MOVETO) { throw new IllegalPathStateException("missing initial moveto"); } float curx, cury, movx, movy; bezierCoords[0] = curx = movx = coords[0]; bezierCoords[1] = cury = movy = coords[1]; float newx, newy; Vector savedpathendpoints = new Vector(); numCoords = 2; while (!pi.isDone()) { switch (pi.currentSegment(coords)) { case PathIterator.SEG_MOVETO: if (curx != movx || cury != movy) { appendLineTo(curx, cury, movx, movy); curx = movx; cury = movy; } newx = coords[0]; newy = coords[1]; if (curx != newx || cury != newy) { savedpathendpoints.add(new Point2D(movx, movy)); appendLineTo(curx, cury, newx, newy); curx = movx = newx; cury = movy = newy; } break; case PathIterator.SEG_CLOSE: if (curx != movx || cury != movy) { appendLineTo(curx, cury, movx, movy); curx = movx; cury = movy; } break; case PathIterator.SEG_LINETO: newx = coords[0]; newy = coords[1]; appendLineTo(curx, cury, newx, newy); curx = newx; cury = newy; break; case PathIterator.SEG_QUADTO: float ctrlx = coords[0]; float ctrly = coords[1]; newx = coords[2]; newy = coords[3]; appendQuadTo(curx, cury, ctrlx, ctrly, newx, newy); curx = newx; cury = newy; break; case PathIterator.SEG_CUBICTO: appendCubicTo(coords[0], coords[1], coords[2], coords[3], curx = coords[4], cury = coords[5]); break; } pi.next(); } // Add closing segment if either: // - we only have initial moveto - expand it to an empty cubic // - or we are not back to the starting point if ((numCoords < 8) || curx != movx || cury != movy) { appendLineTo(curx, cury, movx, movy); curx = movx; cury = movy; } // Now retrace our way back through all of the connecting // inter-subpath segments for (int i = savedpathendpoints.size()-1; i >= 0; i--) { Point2D p = savedpathendpoints.get(i); newx = p.x; newy = p.y; if (curx != newx || cury != newy) { appendLineTo(curx, cury, newx, newy); curx = newx; cury = newy; } } // Now find the segment endpoint with the smallest Y coordinate int minPt = 0; float minX = bezierCoords[0]; float minY = bezierCoords[1]; for (int ci = 6; ci < numCoords; ci += 6) { float x = bezierCoords[ci]; float y = bezierCoords[ci + 1]; if (y < minY || (y == minY && x < minX)) { minPt = ci; minX = x; minY = y; } } // If the smallest Y coordinate is not the first coordinate, // rotate the points so that it is... if (minPt > 0) { // Keep in mind that first 2 coords == last 2 coords float newCoords[] = new float[numCoords]; // Copy all coordinates from minPt to the end of the // array to the beginning of the new array System.arraycopy(bezierCoords, minPt, newCoords, 0, numCoords - minPt); // Now we do not want to copy 0,1 as they are duplicates // of the last 2 coordinates which we just copied. So // we start the source copy at index 2, but we still // copy a full minPt coordinates which copies the two // coordinates that were at minPt to the last two elements // of the array, thus ensuring that thew new array starts // and ends with the same pair of coordinates... System.arraycopy(bezierCoords, 2, newCoords, numCoords - minPt, minPt); bezierCoords = newCoords; } /* Clockwise enforcement: * - This technique is based on the formula for calculating * the area of a Polygon. The standard formula is: * Area(Poly) = 1/2 * sum(x[i]*y[i+1] - x[i+1]y[i]) * - The returned area is negative if the polygon is * "mostly clockwise" and positive if the polygon is * "mostly counter-clockwise". * - One failure mode of the Area calculation is if the * Polygon is self-intersecting. This is due to the * fact that the areas on each side of the self-intersection * are bounded by segments which have opposite winding * direction. Thus, those areas will have opposite signs * on the acccumulation of their area summations and end * up canceling each other out partially. * - This failure mode of the algorithm in determining the * exact magnitude of the area is not actually a big problem * for our needs here since we are only using the sign of * the resulting area to figure out the overall winding * direction of the path. If self-intersections cause * different parts of the path to disagree as to the * local winding direction, that is no matter as we just * wait for the final answer to tell us which winding * direction had greater representation. If the final * result is zero then the path was equal parts clockwise * and counter-clockwise and we do not care about which * way we order it as either way will require half of the * path to unwind and re-wind itself. */ float area = 0; // Note that first and last points are the same so we // do not need to process coords[0,1] against coords[n-2,n-1] curx = bezierCoords[0]; cury = bezierCoords[1]; for (int i = 2; i < numCoords; i += 2) { newx = bezierCoords[i]; newy = bezierCoords[i + 1]; area += curx * newy - newx * cury; curx = newx; cury = newy; } if (area < 0) { /* The area is negative so the shape was clockwise * in a Euclidean sense. But, our screen coordinate * systems have the origin in the upper left so they * are flipped. Thus, this path "looks" ccw on the * screen so we are flipping it to "look" clockwise. * Note that the first and last points are the same * so we do not need to swap them. * (Not that it matters whether the paths end up cw * or ccw in the end as long as all of them are the * same, but above we called this section "Clockwise * Enforcement", so we do not want to be liars. ;-) */ // Note that [0,1] do not need to be swapped with [n-2,n-1] // So first pair to swap is [2,3] and [n-4,n-3] int i = 2; int j = numCoords - 4; while (i < j) { curx = bezierCoords[i]; cury = bezierCoords[i + 1]; bezierCoords[i] = bezierCoords[j]; bezierCoords[i + 1] = bezierCoords[j + 1]; bezierCoords[j] = curx; bezierCoords[j + 1] = cury; i += 2; j -= 2; } } } private void appendLineTo(float x0, float y0, float x1, float y1) { appendCubicTo(// A third of the way from xy0 to xy1: interp(x0, x1, THIRD), interp(y0, y1, THIRD), // A third of the way from xy1 back to xy0: interp(x1, x0, THIRD), interp(y1, y0, THIRD), x1, y1); } private void appendQuadTo(float x0, float y0, float ctrlx, float ctrly, float x1, float y1) { appendCubicTo(// A third of the way from ctrlxy back to xy0: interp(ctrlx, x0, THIRD), interp(ctrly, y0, THIRD), // A third of the way from ctrlxy to xy1: interp(ctrlx, x1, THIRD), interp(ctrly, y1, THIRD), x1, y1); } private void appendCubicTo(float ctrlx1, float ctrly1, float ctrlx2, float ctrly2, float x1, float y1) { if (numCoords + 6 > bezierCoords.length) { // Keep array size to a multiple of 6 plus 2 int newsize = (numCoords - 2) * 2 + 2; float newCoords[] = new float[newsize]; System.arraycopy(bezierCoords, 0, newCoords, 0, numCoords); bezierCoords = newCoords; } bezierCoords[numCoords++] = ctrlx1; bezierCoords[numCoords++] = ctrly1; bezierCoords[numCoords++] = ctrlx2; bezierCoords[numCoords++] = ctrly2; bezierCoords[numCoords++] = x1; bezierCoords[numCoords++] = y1; } public int getWindingRule() { return windingrule; } public int getNumCoords() { return numCoords; } public float getCoord(int i) { return bezierCoords[i]; } public float[] getTvals() { if (myTvals != null) { return myTvals; } // assert(numCoords >= 8); // assert(((numCoords - 2) % 6) == 0); float tvals[] = new float[(numCoords - 2) / 6 + 1]; // First calculate total "length" of path // Length of each segment is averaged between // the length between the endpoints (a lower bound for a cubic) // and the length of the control polygon (an upper bound) float segx = bezierCoords[0]; float segy = bezierCoords[1]; float tlen = 0; int ci = 2; int ti = 0; while (ci < numCoords) { float prevx, prevy, newx, newy; prevx = segx; prevy = segy; newx = bezierCoords[ci++]; newy = bezierCoords[ci++]; prevx -= newx; prevy -= newy; float len = (float) Math.sqrt(prevx * prevx + prevy * prevy); prevx = newx; prevy = newy; newx = bezierCoords[ci++]; newy = bezierCoords[ci++]; prevx -= newx; prevy -= newy; len += (float) Math.sqrt(prevx * prevx + prevy * prevy); prevx = newx; prevy = newy; newx = bezierCoords[ci++]; newy = bezierCoords[ci++]; prevx -= newx; prevy -= newy; len += (float) Math.sqrt(prevx * prevx + prevy * prevy); // len is now the total length of the control polygon segx -= newx; segy -= newy; len += (float) Math.sqrt(segx * segx + segy * segy); // len is now sum of linear length and control polygon length len /= 2; // len is now average of the two lengths /* If the result is zero length then we will have problems * below trying to do the math and bookkeeping to split * the segment or pair it against the segments in the * other shape. Since these lengths are just estimates * to map the segments of the two shapes onto corresponding * segments of "approximately the same length", we will * simply modify the length of this segment to be at least * a minimum value and it will simply grow from zero or * near zero length to a non-trivial size as it morphs. */ if (len < MIN_LEN) { len = MIN_LEN; } tlen += len; tvals[ti++] = tlen; segx = newx; segy = newy; } // Now set tvals for each segment to its proportional // part of the length float prevt = tvals[0]; tvals[0] = 0; for (ti = 1; ti < tvals.length - 1; ti++) { float nextt = tvals[ti]; tvals[ti] = prevt / tlen; prevt = nextt; } tvals[ti] = 1; return (myTvals = tvals); } public void setTvals(float newTvals[]) { float oldCoords[] = bezierCoords; float newCoords[] = new float[2 + (newTvals.length - 1) * 6]; float oldTvals[] = getTvals(); int oldci = 0; float x0, xc0, xc1, x1; float y0, yc0, yc1, y1; x0 = xc0 = xc1 = x1 = oldCoords[oldci++]; y0 = yc0 = yc1 = y1 = oldCoords[oldci++]; int newci = 0; newCoords[newci++] = x0; newCoords[newci++] = y0; float t0 = 0; float t1 = 0; int oldti = 1; int newti = 1; while (newti < newTvals.length) { if (t0 >= t1) { x0 = x1; y0 = y1; xc0 = oldCoords[oldci++]; yc0 = oldCoords[oldci++]; xc1 = oldCoords[oldci++]; yc1 = oldCoords[oldci++]; x1 = oldCoords[oldci++]; y1 = oldCoords[oldci++]; t1 = oldTvals[oldti++]; } float nt = newTvals[newti++]; // assert(nt > t0); if (nt < t1) { // Make nt proportional to [t0 => t1] range float relt = (nt - t0) / (t1 - t0); newCoords[newci++] = x0 = interp(x0, xc0, relt); newCoords[newci++] = y0 = interp(y0, yc0, relt); xc0 = interp(xc0, xc1, relt); yc0 = interp(yc0, yc1, relt); xc1 = interp(xc1, x1, relt); yc1 = interp(yc1, y1, relt); newCoords[newci++] = x0 = interp(x0, xc0, relt); newCoords[newci++] = y0 = interp(y0, yc0, relt); xc0 = interp(xc0, xc1, relt); yc0 = interp(yc0, yc1, relt); newCoords[newci++] = x0 = interp(x0, xc0, relt); newCoords[newci++] = y0 = interp(y0, yc0, relt); } else { newCoords[newci++] = xc0; newCoords[newci++] = yc0; newCoords[newci++] = xc1; newCoords[newci++] = yc1; newCoords[newci++] = x1; newCoords[newci++] = y1; } t0 = nt; } bezierCoords = newCoords; numCoords = newCoords.length; myTvals = newTvals; } } private static class MorphedShape extends Shape { Geometry geom0; Geometry geom1; float t; MorphedShape(Geometry geom0, Geometry geom1, float t) { this.geom0 = geom0; this.geom1 = geom1; this.t = t; } public Rectangle getRectangle() { return new Rectangle(getBounds()); } public RectBounds getBounds() { int n = geom0.getNumCoords(); float xmin, ymin, xmax, ymax; xmin = xmax = interp(geom0.getCoord(0), geom1.getCoord(0), t); ymin = ymax = interp(geom0.getCoord(1), geom1.getCoord(1), t); for (int i = 2; i < n; i += 2) { float x = interp(geom0.getCoord(i), geom1.getCoord(i), t); float y = interp(geom0.getCoord(i+1), geom1.getCoord(i+1), t); if (xmin > x) { xmin = x; } if (ymin > y) { ymin = y; } if (xmax < x) { xmax = x; } if (ymax < y) { ymax = y; } } return new RectBounds(xmin, ymin, xmax, ymax); } public boolean contains(float x, float y) { return Path2D.contains(getPathIterator(null), x, y); } public boolean intersects(float x, float y, float w, float h) { return Path2D.intersects(getPathIterator(null), x, y, w, h); } public boolean contains(float x, float y, float width, float height) { return Path2D.contains(getPathIterator(null), x, y, width, height); } public PathIterator getPathIterator(BaseTransform at) { return new Iterator(at, geom0, geom1, t); } public PathIterator getPathIterator(BaseTransform at, float flatness) { return new FlatteningPathIterator(getPathIterator(at), flatness); } public Shape copy() { return new Path2D(this); } } private static class Iterator implements PathIterator { BaseTransform at; Geometry g0; Geometry g1; float t; int cindex; public Iterator(BaseTransform at, Geometry g0, Geometry g1, float t) { this.at = at; this.g0 = g0; this.g1 = g1; this.t = t; } /** * @{inheritDoc} */ public int getWindingRule() { return (t < 0.5 ? g0.getWindingRule() : g1.getWindingRule()); } /** * @{inheritDoc} */ public boolean isDone() { return (cindex > g0.getNumCoords()); } /** * @{inheritDoc} */ public void next() { if (cindex == 0) { cindex = 2; } else { cindex += 6; } } /** * @{inheritDoc} */ public int currentSegment(float coords[]) { int type; int n; if (cindex == 0) { type = SEG_MOVETO; n = 2; } else if (cindex >= g0.getNumCoords()) { type = SEG_CLOSE; n = 0; } else { type = SEG_CUBICTO; n = 6; } if (n > 0) { for (int i = 0; i < n; i++) { coords[i] = (float) interp(g0.getCoord(cindex + i), g1.getCoord(cindex + i), t); } if (at != null) { at.transform(coords, 0, coords, 0, n / 2); } } return type; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy