All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.sun.openpisces.Dasher Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.openpisces;

import com.sun.javafx.geom.PathConsumer2D;

/**
 * The Dasher class takes a series of linear commands
 * (moveTo, lineTo, close and
 * end) and breaks them into smaller segments according to a
 * dash pattern array and a starting dash phase.
 *
 * 

Issues: in J2Se, a zero length dash segment as drawn as a very * short dash, whereas Pisces does not draw anything. The PostScript * semantics are unclear. * */ public final class Dasher implements PathConsumer2D { private final PathConsumer2D out; private float[] dash; private float startPhase; private boolean startDashOn; private int startIdx; private boolean starting; private boolean needsMoveTo; private int idx; private boolean dashOn; private float phase; private float sx, sy; private float x0, y0; // temporary storage for the current curve private float[] curCurvepts; /** * Constructs a Dasher. * * @param out an output PathConsumer2D. * @param dash an array of floats containing the dash pattern * @param phase a float containing the dash phase */ public Dasher(PathConsumer2D out, float[] dash, float phase) { this(out); reset(dash, phase); } public Dasher(PathConsumer2D out) { this.out = out; // we need curCurvepts to be able to contain 2 curves because when // dashing curves, we need to subdivide it curCurvepts = new float[8 * 2]; } public void reset(float[] dash, float phase) { if (phase < 0) { throw new IllegalArgumentException("phase < 0 !"); } // Normalize so 0 <= phase < dash[0] int sidx = 0; dashOn = true; float d; while (phase >= (d = dash[sidx])) { phase -= d; sidx = (sidx + 1) % dash.length; dashOn = !dashOn; } this.dash = dash; this.startPhase = this.phase = phase; this.startDashOn = dashOn; this.startIdx = sidx; this.starting = true; } public void moveTo(float x0, float y0) { if (firstSegidx > 0) { out.moveTo(sx, sy); emitFirstSegments(); } needsMoveTo = true; this.idx = startIdx; this.dashOn = this.startDashOn; this.phase = this.startPhase; this.sx = this.x0 = x0; this.sy = this.y0 = y0; this.starting = true; } private void emitSeg(float[] buf, int off, int type) { switch (type) { case 8: out.curveTo(buf[off+0], buf[off+1], buf[off+2], buf[off+3], buf[off+4], buf[off+5]); break; case 6: out.quadTo(buf[off+0], buf[off+1], buf[off+2], buf[off+3]); break; case 4: out.lineTo(buf[off], buf[off+1]); } } private void emitFirstSegments() { for (int i = 0; i < firstSegidx; ) { emitSeg(firstSegmentsBuffer, i+1, (int)firstSegmentsBuffer[i]); i += (((int)firstSegmentsBuffer[i]) - 1); } firstSegidx = 0; } // We don't emit the first dash right away. If we did, caps would be // drawn on it, but we need joins to be drawn if there's a closePath() // So, we store the path elements that make up the first dash in the // buffer below. private float[] firstSegmentsBuffer = new float[7]; private int firstSegidx = 0; // precondition: pts must be in relative coordinates (relative to x0,y0) // fullCurve is true iff the curve in pts has not been split. private void goTo(float[] pts, int off, final int type) { float x = pts[off + type - 4]; float y = pts[off + type - 3]; if (dashOn) { if (starting) { firstSegmentsBuffer = Helpers.widenArray(firstSegmentsBuffer, firstSegidx, type - 1); firstSegmentsBuffer[firstSegidx++] = type; System.arraycopy(pts, off, firstSegmentsBuffer, firstSegidx, type - 2); firstSegidx += type - 2; } else { if (needsMoveTo) { out.moveTo(x0, y0); needsMoveTo = false; } emitSeg(pts, off, type); } } else { starting = false; needsMoveTo = true; } this.x0 = x; this.y0 = y; } public void lineTo(float x1, float y1) { float dx = x1 - x0; float dy = y1 - y0; float len = (float) Math.sqrt(dx*dx + dy*dy); if (len == 0) { return; } // The scaling factors needed to get the dx and dy of the // transformed dash segments. float cx = dx / len; float cy = dy / len; while (true) { float leftInThisDashSegment = dash[idx] - phase; if (len <= leftInThisDashSegment) { curCurvepts[0] = x1; curCurvepts[1] = y1; goTo(curCurvepts, 0, 4); // Advance phase within current dash segment phase += len; if (len == leftInThisDashSegment) { phase = 0f; idx = (idx + 1) % dash.length; dashOn = !dashOn; } return; } float dashdx = dash[idx] * cx; float dashdy = dash[idx] * cy; if (phase == 0) { curCurvepts[0] = x0 + dashdx; curCurvepts[1] = y0 + dashdy; } else { float p = leftInThisDashSegment / dash[idx]; curCurvepts[0] = x0 + p * dashdx; curCurvepts[1] = y0 + p * dashdy; } goTo(curCurvepts, 0, 4); len -= leftInThisDashSegment; // Advance to next dash segment idx = (idx + 1) % dash.length; dashOn = !dashOn; phase = 0; } } private LengthIterator li = null; // preconditions: curCurvepts must be an array of length at least 2 * type, // that contains the curve we want to dash in the first type elements private void somethingTo(int type) { if (pointCurve(curCurvepts, type)) { return; } if (li == null) { li = new LengthIterator(4, 0.01f); } li.initializeIterationOnCurve(curCurvepts, type); int curCurveoff = 0; // initially the current curve is at curCurvepts[0...type] float lastSplitT = 0; float t = 0; float leftInThisDashSegment = dash[idx] - phase; while ((t = li.next(leftInThisDashSegment)) < 1) { if (t != 0) { Helpers.subdivideAt((t - lastSplitT) / (1 - lastSplitT), curCurvepts, curCurveoff, curCurvepts, 0, curCurvepts, type, type); lastSplitT = t; goTo(curCurvepts, 2, type); curCurveoff = type; } // Advance to next dash segment idx = (idx + 1) % dash.length; dashOn = !dashOn; phase = 0; leftInThisDashSegment = dash[idx]; } goTo(curCurvepts, curCurveoff+2, type); phase += li.lastSegLen(); if (phase >= dash[idx]) { phase = 0f; idx = (idx + 1) % dash.length; dashOn = !dashOn; } } private static boolean pointCurve(float[] curve, int type) { for (int i = 2; i < type; i++) { if (curve[i] != curve[i-2]) { return false; } } return true; } // Objects of this class are used to iterate through curves. They return // t values where the left side of the curve has a specified length. // It does this by subdividing the input curve until a certain error // condition has been met. A recursive subdivision procedure would // return as many as 1< 0) { this.sides[0] = Side.LEFT; this.done = false; } else { // the root of the tree is a leaf so we're done. this.sides[0] = Side.RIGHT; this.done = true; } this.lastSegLen = 0; } // 0 == false, 1 == true, -1 == invalid cached value. private int cachedHaveLowAcceleration = -1; private boolean haveLowAcceleration(float err) { if (cachedHaveLowAcceleration == -1) { final float len1 = curLeafCtrlPolyLengths[0]; final float len2 = curLeafCtrlPolyLengths[1]; // the test below is equivalent to !within(len1/len2, 1, err). // It is using a multiplication instead of a division, so it // should be a bit faster. if (!Helpers.within(len1, len2, err*len2)) { cachedHaveLowAcceleration = 0; return false; } if (curveType == 8) { final float len3 = curLeafCtrlPolyLengths[2]; // if len1 is close to 2 and 2 is close to 3, that probably // means 1 is close to 3 so the second part of this test might // not be needed, but it doesn't hurt to include it. if (!(Helpers.within(len2, len3, err*len3) && Helpers.within(len1, len3, err*len3))) { cachedHaveLowAcceleration = 0; return false; } } cachedHaveLowAcceleration = 1; return true; } return (cachedHaveLowAcceleration == 1); } // we want to avoid allocations/gc so we keep this array so we // can put roots in it, private float[] nextRoots = new float[4]; // caches the coefficients of the current leaf in its flattened // form (see inside next() for what that means). The cache is // invalid when it's third element is negative, since in any // valid flattened curve, this would be >= 0. private float[] flatLeafCoefCache = new float[] {0, 0, -1, 0}; // returns the t value where the remaining curve should be split in // order for the left subdivided curve to have length len. If len // is >= than the length of the uniterated curve, it returns 1. public float next(final float len) { final float targetLength = lenAtLastSplit + len; while(lenAtNextT < targetLength) { if (done) { lastSegLen = lenAtNextT - lenAtLastSplit; return 1; } goToNextLeaf(); } lenAtLastSplit = targetLength; final float leaflen = lenAtNextT - lenAtLastT; float t = (targetLength - lenAtLastT) / leaflen; // cubicRootsInAB is a fairly expensive call, so we just don't do it // if the acceleration in this section of the curve is small enough. if (!haveLowAcceleration(0.05f)) { // We flatten the current leaf along the x axis, so that we're // left with a, b, c which define a 1D Bezier curve. We then // solve this to get the parameter of the original leaf that // gives us the desired length. if (flatLeafCoefCache[2] < 0) { float x = 0+curLeafCtrlPolyLengths[0], y = x+curLeafCtrlPolyLengths[1]; if (curveType == 8) { float z = y + curLeafCtrlPolyLengths[2]; flatLeafCoefCache[0] = 3*(x - y) + z; flatLeafCoefCache[1] = 3*(y - 2*x); flatLeafCoefCache[2] = 3*x; flatLeafCoefCache[3] = -z; } else if (curveType == 6) { flatLeafCoefCache[0] = 0f; flatLeafCoefCache[1] = y - 2*x; flatLeafCoefCache[2] = 2*x; flatLeafCoefCache[3] = -y; } } float a = flatLeafCoefCache[0]; float b = flatLeafCoefCache[1]; float c = flatLeafCoefCache[2]; float d = t*flatLeafCoefCache[3]; // we use cubicRootsInAB here, because we want only roots in 0, 1, // and our quadratic root finder doesn't filter, so it's just a // matter of convenience. int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1); if (n == 1 && !Float.isNaN(nextRoots[0])) { t = nextRoots[0]; } } // t is relative to the current leaf, so we must make it a valid parameter // of the original curve. t = t * (nextT - lastT) + lastT; if (t >= 1) { t = 1; done = true; } // even if done = true, if we're here, that means targetLength // is equal to, or very, very close to the total length of the // curve, so lastSegLen won't be too high. In cases where len // overshoots the curve, this method will exit in the while // loop, and lastSegLen will still be set to the right value. lastSegLen = len; return t; } public float lastSegLen() { return lastSegLen; } // go to the next leaf (in an inorder traversal) in the recursion tree // preconditions: must be on a leaf, and that leaf must not be the root. private void goToNextLeaf() { // We must go to the first ancestor node that has an unvisited // right child. recLevel--; while(sides[recLevel] == Side.RIGHT) { if (recLevel == 0) { done = true; return; } recLevel--; } sides[recLevel] = Side.RIGHT; System.arraycopy(recCurveStack[recLevel], 0, recCurveStack[recLevel+1], 0, curveType); recLevel++; goLeft(); } // go to the leftmost node from the current node. Return its length. private void goLeft() { float len = onLeaf(); if (len >= 0) { lastT = nextT; lenAtLastT = lenAtNextT; nextT += (1 << (limit - recLevel)) * minTincrement; lenAtNextT += len; // invalidate caches flatLeafCoefCache[2] = -1; cachedHaveLowAcceleration = -1; } else { Helpers.subdivide(recCurveStack[recLevel], 0, recCurveStack[recLevel+1], 0, recCurveStack[recLevel], 0, curveType); sides[recLevel] = Side.LEFT; recLevel++; goLeft(); } } // this is a bit of a hack. It returns -1 if we're not on a leaf, and // the length of the leaf if we are on a leaf. private float onLeaf() { float[] curve = recCurveStack[recLevel]; float polyLen = 0; float x0 = curve[0], y0 = curve[1]; for (int i = 2; i < curveType; i += 2) { final float x1 = curve[i], y1 = curve[i+1]; final float len = Helpers.linelen(x0, y0, x1, y1); polyLen += len; curLeafCtrlPolyLengths[i/2 - 1] = len; x0 = x1; y0 = y1; } final float lineLen = Helpers.linelen(curve[0], curve[1], curve[curveType-2], curve[curveType-1]); if (polyLen - lineLen < ERR || recLevel == limit) { return (polyLen + lineLen)/2; } return -1; } } @Override public void curveTo(float x1, float y1, float x2, float y2, float x3, float y3) { curCurvepts[0] = x0; curCurvepts[1] = y0; curCurvepts[2] = x1; curCurvepts[3] = y1; curCurvepts[4] = x2; curCurvepts[5] = y2; curCurvepts[6] = x3; curCurvepts[7] = y3; somethingTo(8); } @Override public void quadTo(float x1, float y1, float x2, float y2) { curCurvepts[0] = x0; curCurvepts[1] = y0; curCurvepts[2] = x1; curCurvepts[3] = y1; curCurvepts[4] = x2; curCurvepts[5] = y2; somethingTo(6); } public void closePath() { lineTo(sx, sy); if (firstSegidx > 0) { if (!dashOn || needsMoveTo) { out.moveTo(sx, sy); } emitFirstSegments(); } moveTo(sx, sy); } public void pathDone() { if (firstSegidx > 0) { out.moveTo(sx, sy); emitFirstSegments(); } out.pathDone(); } // @Override // public long getNativeConsumer() { // throw new InternalError("Dasher does not use a native consumer"); // } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy