All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.jkernelmachines.classifier.transductive.S3VMLightSGDQN Maven / Gradle / Ivy

Go to download

JKernelMachines is a java library for learning with kernels. It is primary designed to deal with custom kernels that are not easily found in standard libraries, such as kernels on structured data.

The newest version!
/*******************************************************************************
 * Copyright (c) 2016, David Picard.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation and/or
 * other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************/
package net.jkernelmachines.classifier.transductive;

import java.util.ArrayList;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.SortedSet;
import java.util.TreeSet;

import net.jkernelmachines.classifier.DoubleSGDQN;
import net.jkernelmachines.type.TrainingSample;
import net.jkernelmachines.util.DebugPrinter;

/**
 * Fast Linear transductive SVM using a combination of SVMLight and SGDQN algorithms.
 * 
 * @author picard
 *
 */
public class S3VMLightSGDQN implements TransductiveClassifier {

	
	int numplus = 0;
	
	ArrayList> train;
	ArrayList> test;
	
	DoubleSGDQN svm;
	double C = 1.0;
	double E = 10;
	
	DebugPrinter debug = new DebugPrinter();
	
	/**
	 * Default constructor
	 */
	public S3VMLightSGDQN()
	{
	}
	
	@Override
	public void train(List> trainList,
			List> testList) {
	
		train = new ArrayList>();
		train.addAll(trainList);
		// counting numplus
		numplus = 0;
		for(TrainingSample t : train) {
			if(t.label > 0) {
				numplus++;
			}
		}
		
		test = new ArrayList>();
		//copy test samples
		for(TrainingSample tm : testList)
		{
			TrainingSample t = new TrainingSample(tm.sample, 0);
			test.add(t);
		}

		numplus = (numplus * test.size()) / train.size();
		
		train();

	}

	private void train()
	{
		debug.println(2, "training on "+train.size()+" train data and "+test.size()+" test data");
		
		//first training
		debug.print(3, "first training ");
		svm = new DoubleSGDQN();
		DoubleSGDQN.VERBOSE = false;
		svm.train(train);
		debug.println(3, " done.");
		
		//affect numplus highest output to plus class
		debug.println(3, "affecting 1 to the "+numplus+" highest output");
		SortedSet> sorted = new TreeSet>(new Comparator>(){

			@Override
			public int compare(TrainingSample o1, TrainingSample o2) {
				int ret = (new Double(svm.valueOf(o2.sample))).compareTo(svm.valueOf(o1.sample));
				if(ret == 0)
					ret = -1;
				return ret;
			}
			
		});
		sorted.addAll(test);
		debug.println(4, "sorted size : "+sorted.size()+" test size : "+test.size());
		int n = 0;
		for(TrainingSample t : sorted)
		{
			if(n <= numplus)
				t.label = 1;
			else
				t.label = -1;
			n++;
		}
		
		double Cminus = 1e-5;
		double Cplus = 1e-5 * numplus/(test.size() - numplus);
		
		while(Cminus < C || Cplus < C)
		{
			//solve full problem
			ArrayList> full = new ArrayList>();
			full.addAll(train);
			full.addAll(test);
			
			debug.print(3, "full training ");
			svm = new DoubleSGDQN();
			svm.setC((Cminus+Cplus)/2.);
			svm.train(full);
			debug.println(3, "done.");
			
			boolean changed = false;
			
			do
			{
				changed = false;
				//0. computing error
				final Map, Double> errorCache = new HashMap, Double>();
				for(TrainingSample t : test)
				{
					double err1 = 1. - t.label * svm.valueOf(t.sample);
					errorCache.put(t, err1);
				}
				debug.println(3, "Error cache done.");
				
				// 1 . sort by descending error
				sorted = new TreeSet>(new Comparator>(){

					@Override
					public int compare(TrainingSample o1,
							TrainingSample o2) {
						int ret = errorCache.get(o2).compareTo(errorCache.get(o1));
						if(ret == 0)
							ret = -1;
						return ret;
					}
				});
				sorted.addAll(test);
				List> sortedList = new ArrayList>();
				sortedList.addAll(sorted);
				
				
				debug.println(3, "sorting done, checking couple");
				
				// 2 . test all couple by decreasing error order
//				for(TrainingSample i1 : sorted)
				for(int i = 0 ; i < sortedList.size(); i++)
				{
					TrainingSample i1 = sortedList.get(i);
//					for(TrainingSample i2 : sorted)
					for(int j = i+1; j < sortedList.size(); j++)
					{
						TrainingSample i2 = sortedList.get(j);
						if(examine(i1, i2, errorCache))
						{
							debug.println(3, "couple found !");
							changed = true;
							break;
						}
					}
					if(changed)
						break;
				}

				if(changed)
				{
					debug.println(3, "re-training");
					svm = new DoubleSGDQN();
					svm.setC((Cminus+Cplus)/2.);
					svm.train(full);
				}
			}
			while(changed);

			debug.println(3, "increasing C+ : "+Cplus+" and C- : "+Cminus);
			Cminus = Math.min(2*Cminus, C);
			Cplus = Math.min(2 * Cplus, C);
		}
		
		debug.println(2, "training done");
	}
	

	//check if the pair of example fulfill the swapping conditions
	private boolean examine(TrainingSample i1, TrainingSample i2, Map, Double> errorCache)
	{
		if(i1.label * i2.label > 0)
			return false;
		
		if(!errorCache.containsKey(i1))
			return false;
		double err1 = errorCache.get(i1);	
		if(err1 <= 0)
			return false;
		
		if(!errorCache.containsKey(i2))
			return false;
		double err2 = errorCache.get(i2);
		if(err2 <= 0)
			return false;
		
		debug.println(4, "y1 : "+i1.label+" err1 : "+err1+" y2 : "+i2.label+" err2 : "+err2);
		if(err1 + err2 <= 2)
			return false;
		
		//found a good couple
		int tmplabel = i1.label;
		i1.label = i2.label;
		i2.label = tmplabel;
		
		return true;
	}
	
	
	@Override
	public double valueOf(double[] t) {
		return svm.valueOf(t);
	}

	/**
	 * Tells the number of positive samples (used for transductive label estimation)
	 * @return the number of positive samples
	 */
	public int getNumplus() {
		return numplus;
	}

	/**
	 * Sets the number of positives samples (used for transductive label estimation)
	 * @param numplus the number of positive samples
	 */
	public void setNumplus(int numplus) {
		this.numplus = numplus;
	}

	/**
	 * Tells the hyperparameter C
	 * @return the hyperparameter C
	 */
	public double getC() {
		return C;
	}

	/**
	 * Sets the hyperparameter C
	 * @param c the hyperparameter C
	 */
	public void setC(double c) {
		C = c;
	}

	/**
	 * Tells the number of epochs used by internal SGDQN solver for training
	 * @return the number of epochs
	 */
	public double getE() {
		return E;
	}

	/**
	 * Sets the number of epochs used for training by the internal SGDQN solver
	 * @param e the number of epochs
	 */
	public void setE(double e) {
		E = e;
	}

	
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy