All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.jkernelmachines.kernel.adaptative.GaussianProductKernel Maven / Gradle / Ivy

Go to download

JKernelMachines is a java library for learning with kernels. It is primary designed to deal with custom kernels that are not easily found in standard libraries, such as kernels on structured data.

The newest version!
/*******************************************************************************
 * Copyright (c) 2016, David Picard.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation and/or
 * other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************/
package net.jkernelmachines.kernel.adaptative;

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import net.jkernelmachines.kernel.GaussianKernel;
import net.jkernelmachines.kernel.Kernel;
import net.jkernelmachines.threading.ThreadedMatrixOperator;
import net.jkernelmachines.type.TrainingSample;

/**
 * Major kernel computed as a weighted product of minor Gaussian kernels : 
 * K =  k_i^{w_i}
 * Computation of the kernel matrix is done by running a thread on sub matrices.
 * The number of threads is chosen as function of the number of available cpus.
 * @author dpicard
 *
 * @param  samples datatype
 */
public class GaussianProductKernel extends Kernel {

	/**
	 * 
	 */
	private static final long serialVersionUID = 7780445301175174296L;
	
	
	private Map, Double> kernels;
	protected int numThread = 0;
	
	public GaussianProductKernel()
	{
		kernels = new HashMap, Double>();
	}

	/**
	 * Sets the weights to h. Beware! It does not make a copy of h!
	 * @param h weights
	 */
	public GaussianProductKernel(Map, Double> h)
	{
		kernels = new HashMap, Double>();
		kernels.putAll(h);
	}
	
	/**
	 * adds a kernel to the sum with weight 1.0
	 * @param k underlying kernel
	 */
	public void addKernel(GaussianKernel k)
	{
		synchronized(kernels)
		{
			kernels.put(k, 1.0);
		}
	}
	
	/**
	 * adds a kernel to the product with weight d
	 * @param k kernel
	 * @param d corresponding weight
	 */
	public void addKernel(GaussianKernel k , double d)
	{
		synchronized(kernels)
		{
			kernels.put(k, d);
		}
	}
	
	/**
	 * removes kernel k from the product
	 * @param k kernel
	 */
	public void removeKernel(GaussianKernel k)
	{
		synchronized(kernels)
		{
			kernels.remove(k);
		}
	}
	
	/**
	 * gets the weights of kernel k
	 * @param k kernel
	 * @return the weight associated with k
	 */
	public double getWeight(GaussianKernel k)
	{
		synchronized(kernels)
		{
			Double d = kernels.get(k);
			if(d == null)
				return 0.;
			return d.doubleValue();
		}
	}
	
	/**
	 * Sets the weight of kernel k
	 * @param k kernel
	 * @param d weight
	 */
	public void setWeight(GaussianKernel k, Double d)
	{
		synchronized(kernels)
		{
			kernels.put(k, d);
		}
	}
	
	@Override
	public double valueOf(T t1, T t2) {
		double sum = 1.;
		for(GaussianKernel k : kernels.keySet())
		{
			double w = kernels.get(k);
			if(w != 0) {
				k.setGamma(w);
				sum *= k.valueOf(t1, t2);
			}
		}
		
		return sum;
	}

	@Override
	public double valueOf(T t1) {
		return valueOf(t1, t1);
	}
	
	/**
	 * get the list of kernels and associated weights.
	 * @return hashtable containing kernels as keys and weights as values.
	 */
	public Map, Double> getWeights()
	{
		return kernels;
	}
	
	@Override
	public double[][] getKernelMatrix(List> list)
	{
		final List> l = list;
		//init matrix with ones
		double matrix[][] = new double[l.size()][l.size()];
		for(double[] lines : matrix)
			Arrays.fill(lines, 1.);
		

		for(final GaussianKernel k : kernels.keySet())
		{
			final double w = kernels.get(k);
			
			//check w
			if(w == 0)
				continue;
			
			k.setGamma(w);
			final double[][] m = k.getKernelMatrix(l);
			// specific factory
			ThreadedMatrixOperator tmo = new ThreadedMatrixOperator(){
				
				@Override
				public void doLines(double[][] matrix , int from , int to) {
					
					for(int index = from ; index < to ; index++)
					{
						for(int i = 0 ; i < m[index].length ; i++)
						{
							matrix[index][i] *= m[index][i];
						}
					}
				};
				
			};
			
			matrix = tmo.getMatrix(matrix);
		}
		
		return matrix;
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy