All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.jkernelmachines.projection.DoublePCA Maven / Gradle / Ivy

Go to download

JKernelMachines is a java library for learning with kernels. It is primary designed to deal with custom kernels that are not easily found in standard libraries, such as kernels on structured data.

The newest version!
/*******************************************************************************
 * Copyright (c) 2016, David Picard.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation and/or
 * other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its contributors
 * may be used to endorse or promote products derived from this software without
 * specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************/
package net.jkernelmachines.projection;

import static net.jkernelmachines.util.algebra.MatrixOperations.eig;
import static net.jkernelmachines.util.algebra.MatrixOperations.transi;
import static net.jkernelmachines.util.algebra.VectorOperations.add;
import static net.jkernelmachines.util.algebra.VectorOperations.dot;
import static net.jkernelmachines.util.algebra.VectorOperations.mul;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

import net.jkernelmachines.threading.ThreadedMatrixOperator;
import net.jkernelmachines.type.TrainingSample;

/**
 * Principal component analysis on double arrays.
 * @author picard
 *
 */
public class DoublePCA implements Serializable {
	
	private static final long serialVersionUID = -6200080076438113052L;
	double[][] projectors;
	double[] whitening_coeff;
	double[] mean;
	
	/**
	 * Train the projectors on a given data-set.
	 * @param list the list of training samples
	 */
	public void train(final List> list) {
		
		int dim = list.get(0).sample.length;
		
		mean  = new double[dim];
		for(TrainingSample t : list) {
			mean = add(mean, 1, t.sample);
		}
		mean = mul(mean, 1./list.size());
		
		// compute covariance matrix;
		double[][] cov = new double[dim][dim];
		
		ThreadedMatrixOperator factory = new ThreadedMatrixOperator() {
			
			@Override
			public void doLines(double[][] matrix, int from, int to) {
				for(int i = from ; i < to ; i++) {
					for(int j = 0 ; j < matrix.length ; j++) {
						double sum = 0;
						for(TrainingSample t : list) {
							sum += (t.sample[i]-mean[i]) * (t.sample[j]-mean[j]);
						}
						matrix[i][j] = sum/list.size();
					}
				}				
			}
		};
		
		cov = factory.getMatrix(cov);
		
		// eigen decomposition
		double[][][] eig = eig(cov);
		
		//projectors are eigenvectors transposed
		projectors = transi(eig[0]);
		
		//coefficients are the square root of the eigenvalues
		whitening_coeff = new double[dim];
		for(int d = 0 ; d < dim ; d++) {
			if(eig[1][d][d] > 0) {
				whitening_coeff[d] = 1./Math.sqrt(eig[1][d][d]);
			}
			else {
				whitening_coeff[d] = 0;
			}
		}
	}
	
	/**
	 * Project a single sample using the trained projectors.
	 * @param s the sample to project
	 * @return a new sample with the projected vector, and the same label
	 */
	public TrainingSample project(TrainingSample s) {
		double[] px = new double[projectors.length];
		
		for(int i = 0 ; i < projectors.length ; i++) {
			px[i] = dot(projectors[i], add(s.sample, -1, mean));
		}
		
		return new TrainingSample(px, s.label);
	}
	
	/**
	 * Project a single sample using the trained projectors with optional whitening (unitary 
	 * covariance matrix).
	 * @param s the sample to project
	 * @param whitening option to perform a whitened projection
	 * @return a new sample with the projected vector and the same label
	 */
	public TrainingSample project(TrainingSample s, boolean whitening) {
		double[] px = new double[projectors.length];
		
		for(int i = 0 ; i < projectors.length ; i++) {
			px[i] = dot(projectors[i], add(s.sample, -1, mean));
			if(whitening) {
				px[i] *= whitening_coeff[i];
			}
		}
		
		return new TrainingSample(px, s.label);
	} 
	
	/**
	 * Performs the projection on a list of samples.
	 * @param list the list of input samples
	 * @return a new list with projected samples
	 */
	public List> projectList(final List> list) {
		List> out = new ArrayList>();
		
		for(TrainingSample t : list) {
			out.add(project(t));
		}
		
		return out;
	}

	/**
	 * Performs the projection on a list of samples with optional whitening (unitary covariance matrix).
	 * @param list the list of input samples
	 * @param whitening option to perform a whitened projection
	 * @return a new list with projected samples
	 */
	public List> projectList(final List> list, boolean whitening) {
		List> out = new ArrayList>();
		
		for(TrainingSample t : list) {
			out.add(project(t, whitening));
		}
		
		return out;
	}

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy