kieker.analysis.generic.clustering.mtree.IPartitionFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analysis Show documentation
Show all versions of analysis Show documentation
Kieker: Application Performance Monitoring and Dynamic Software Analysis
The newest version!
/***************************************************************************
* Copyright (c) 2012-2013 Eduardo R. D'Avila (https://github.com/erdavila)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
***************************************************************************/
package kieker.analysis.generic.clustering.mtree;
import java.util.Set;
import kieker.analysis.generic.clustering.mtree.utils.Pair;
/**
* An object with partitions a set of data into two sub-sets.
*
* @param
* The type of the data on the sets.
*
* @author Eduardo R. D'Avila
* @since 2.0.0
*/
public interface IPartitionFunction {
/**
* Executes the partitioning.
*
* @param promoted
* The pair of data objects that will guide the partition
* process.
* @param dataSet
* The original set of data objects to be partitioned.
* @param distanceFunction
* A {@linkplain IDistanceFunction distance function}
* to be used on the partitioning.
* @return A pair of partition sub-sets. Each sub-set must correspond to one
* of the {@code promoted} data objects.
*/
Pair> process(Pair promoted, Set dataSet, IDistanceFunction super T> distanceFunction);
}