
kieker.analysis.util.RunningMedian Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of analysis Show documentation
Show all versions of analysis Show documentation
Kieker: Application Performance Monitoring and Dynamic Software Analysis
/***************************************************************************
* Copyright 2022 Kieker Project (http://kieker-monitoring.net)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
***************************************************************************/
package kieker.analysis.util;
import java.util.PriorityQueue;
import java.util.function.BiFunction;
/**
* This class represents a median that changes in the course of time. Whenever a new element is added the median changes.
*
* @param
* Type of elements the median should be calculated for
*
* @author Sören Henning
*
* @since 1.14
*/
public class RunningMedian> {
private final PriorityQueue maxHeap = new PriorityQueue<>((x, y) -> y.compareTo(x));
private final PriorityQueue minHeap = new PriorityQueue<>((x, y) -> x.compareTo(y));
private final BiFunction meanBuilder;
public RunningMedian() {
this((x, y) -> x);
}
public RunningMedian(final BiFunction meanBuilder) {
this.meanBuilder = meanBuilder;
}
public void add(final T element) {
this.insertToHeap(element);
this.balanceHeaps();
}
private void insertToHeap(final T element) {
if ((this.maxHeap.peek() == null) || (element.compareTo(this.maxHeap.peek()) < 0)) {
// element < maxHeap.peek
this.maxHeap.add(element);
} else {
// element >= maxHeap.peek
this.minHeap.add(element);
}
}
private void balanceHeaps() {
if ((this.maxHeap.size() - this.minHeap.size()) > 1) {
final T maxHeapRoot = this.maxHeap.poll();
this.minHeap.add(maxHeapRoot);
} else if ((this.minHeap.size() - this.maxHeap.size()) > 1) {
final T minHeapRoot = this.minHeap.poll();
this.maxHeap.add(minHeapRoot);
}
}
public T getMedian() {
if (this.maxHeap.isEmpty() && this.minHeap.isEmpty()) {
throw new IllegalStateException("There are no present values for this running median.");
} else if (this.maxHeap.size() == this.minHeap.size()) {
return this.meanBuilder.apply(this.maxHeap.peek(), this.minHeap.peek());
} else if (this.maxHeap.size() > this.minHeap.size()) {
return this.maxHeap.peek();
} else {
return this.minHeap.peek();
}
}
public static RunningMedian forInteger() {
return new RunningMedian<>((x, y) -> (x + y) / 2);
}
public static RunningMedian forLong() {
return new RunningMedian<>((x, y) -> (x + y) / 2);
}
public static RunningMedian forDouble() {
return new RunningMedian<>((x, y) -> (x + y) / 2);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy