All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.eval.AbstractRecommenderEvaluator Maven / Gradle / Ivy

/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.eval; import net.librec.conf.Configuration; import net.librec.math.structure.SparseMatrix; import net.librec.math.structure.SymmMatrix; import net.librec.recommender.RecommenderContext; import net.librec.recommender.item.RecommendedList; import net.librec.similarity.RecommenderSimilarity; import java.util.Map; /** * Abstract Recommender Evaluator * * @author WangYuFeng */ public abstract class AbstractRecommenderEvaluator implements RecommenderEvaluator { /** * the number of recommended items */ protected int topN; /** * configuration of the evaluator */ protected Configuration conf; /** * default similarityMatrix */ protected SymmMatrix similarityMatrix; /** * all similarity maps */ protected Map similarities; /** * Evaluate on the recommender context with the recommended list. * * @param context the recommender context * @param recommendedList the list of recommended items * @return evaluate result */ public double evaluate(RecommenderContext context, RecommendedList recommendedList) { SparseMatrix testMatrix = context.getDataModel().getDataSplitter().getTestData(); conf = context.getConf(); String[] similarityKeys = conf.getStrings("rec.recommender.similarities"); if (similarityKeys != null && similarityKeys.length > 0) { similarityMatrix = context.getSimilarity().getSimilarityMatrix(); similarities = context.getSimilarities(); } return evaluate(testMatrix, recommendedList); } /** * Evaluate on the test set with the the list of recommended items. * * @param testMatrix * the given test set * @param recommendedList * the list of recommended items * @return evaluate result */ public abstract double evaluate(SparseMatrix testMatrix, RecommendedList recommendedList); /** * Set the number of recommended items. * * @param topN the number of recommended items */ @Override public void setTopN(int topN) { this.topN = topN; } /** * Return the configuration fo the evaluator. * * @return the configuration fo the evaluator */ public Configuration getConf() { return conf; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy