All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.eval.ranking.DiversityEvaluator Maven / Gradle / Ivy

/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.eval.ranking; import net.librec.eval.AbstractRecommenderEvaluator; import net.librec.math.structure.SparseMatrix; import net.librec.math.structure.SymmMatrix; import net.librec.recommender.item.ItemEntry; import net.librec.recommender.item.RecommendedList; import java.util.List; /** * DiversityEvaluator, average dissimilarity of all pairs of items in the * recommended list at a specific cutoff position. Reference: Avoiding monotony: * improving the diversity of recommendation lists, ReSys, 2008 * * @author WangYuFeng */ public class DiversityEvaluator extends AbstractRecommenderEvaluator { /** * Evaluate on the test set with the the list of recommended items. * * @param testMatrix * the given test set * @param recommendedList * the list of recommended items * @return evaluate result */ public double evaluate(SparseMatrix testMatrix, RecommendedList recommendedList) { double totalDiversity = 0.0; int numUsers = testMatrix.numRows(); int nonZeroNumUsers = 0; if (similarities.containsKey("item")) { SymmMatrix itemSimilarity = similarities.get("item").getSimilarityMatrix(); for (int userID = 0; userID < numUsers; userID++) { List> recommendArrayListByUser = recommendedList.getItemIdxListByUserIdx(userID); if (recommendArrayListByUser.size() > 0) { // calculate the sum of dissimilarities for each pair of items per user double totalDisSimilarityPerUser = 0.0; int topK = this.topN <= recommendArrayListByUser.size() ? this.topN : recommendArrayListByUser.size(); for (int i = 0; i < topK; i++) { for (int j = 0; j < topK; j++) { if (i == j) { continue; } int item1 = recommendArrayListByUser.get(i).getKey(); int item2 = recommendArrayListByUser.get(j).getKey(); totalDisSimilarityPerUser += 1.0 - itemSimilarity.get(item1, item2); } } totalDiversity += totalDisSimilarityPerUser * 2 / (topK * (topK - 1)); nonZeroNumUsers++; } } } return nonZeroNumUsers > 0 ? totalDiversity / nonZeroNumUsers : 0.0d; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy