All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.eval.rating.RMSEEvaluator Maven / Gradle / Ivy

/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.eval.rating; import net.librec.eval.AbstractRecommenderEvaluator; import net.librec.math.structure.MatrixEntry; import net.librec.math.structure.SparseMatrix; import net.librec.recommender.item.RecommendedList; import net.librec.recommender.item.UserItemRatingEntry; import java.util.Iterator; /** * RMSE: root mean square error * * @author WangYuFeng, zhanghaidong and Keqiang Wang */ public class RMSEEvaluator extends AbstractRecommenderEvaluator { public double evaluate(SparseMatrix testMatrix, RecommendedList recommendedList) { if (testMatrix == null) { return 0.0; } double rmse = 0.0; int testSize = 0; Iterator testMatrixIter = testMatrix.iterator(); Iterator recommendedEntryIter = recommendedList.entryIterator(); while (testMatrixIter.hasNext()) { if (recommendedEntryIter.hasNext()) { MatrixEntry testMatrixEntry = testMatrixIter.next(); UserItemRatingEntry userItemRatingEntry = recommendedEntryIter.next(); if (testMatrixEntry.row() == userItemRatingEntry.getUserIdx() && testMatrixEntry.column() == userItemRatingEntry.getItemIdx()) { double realRating = testMatrixEntry.get(); double predictRating = userItemRatingEntry.getValue(); rmse += Math.pow(realRating - predictRating, 2); testSize++; } else { throw new IndexOutOfBoundsException("index of recommendedList does not equal testMatrix index"); } } else { throw new IndexOutOfBoundsException("index size of recommendedList does not equal testMatrix index size"); } } return testSize > 0 ? Math.sqrt(rmse / testSize) : 0.0d; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy