All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.recommender.AbstractRecommender Maven / Gradle / Ivy

/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.recommender; import com.google.common.collect.BiMap; import net.librec.common.LibrecException; import net.librec.conf.Configuration; import net.librec.data.DataModel; import net.librec.eval.Measure; import net.librec.eval.Measure.MeasureValue; import net.librec.eval.RecommenderEvaluator; import net.librec.math.structure.MatrixEntry; import net.librec.math.structure.SparseMatrix; import net.librec.recommender.item.*; import net.librec.util.ReflectionUtil; import org.apache.commons.lang.StringUtils; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import java.util.*; /** * Abstract Recommender Methods * * @author WangYuFeng and Wang Keqiang */ public abstract class AbstractRecommender implements Recommender { /** * LOG */ protected final Log LOG = LogFactory.getLog(this.getClass()); /** * is ranking or rating */ protected boolean isRanking; /** * topN */ protected int topN; /** * conf */ protected Configuration conf; /** * RecommenderContext */ protected RecommenderContext context; /** * trainMatrix */ protected SparseMatrix trainMatrix; /** * testMatrix */ protected SparseMatrix testMatrix; /** * validMatrix */ protected SparseMatrix validMatrix; /** * Recommended Item List */ protected RecommendedList recommendedList; /** * the number of users */ protected int numUsers; /** * the number of items */ protected int numItems; /** * the number of rates */ protected int numRates; /** * Maximum rate of rating scale */ protected double maxRate; /** * Minimum rate of rating scale */ protected double minRate; /** * a list of rating scales */ protected static List ratingScale; /** * user Mapping Data */ public BiMap userMappingData; /** * item Mapping Data */ public BiMap itemMappingData; /** * global mean of ratings */ protected double globalMean; /** * early-stop criteria */ protected boolean earlyStop; /** * verbose */ protected static boolean verbose = true; /** * objective loss */ protected double loss, lastLoss = 0.0d; /** * whether to adjust learning rate automatically */ protected boolean isBoldDriver; /** * decay of learning rate */ protected float decay; /** * setup * * @throws LibrecException if error occurs during setup */ protected void setup() throws LibrecException { conf = context.getConf(); isRanking = conf.getBoolean("rec.recommender.isranking"); if (isRanking) { topN = conf.getInt("rec.recommender.ranking.topn", 10); if (this.topN <= 0) { throw new IndexOutOfBoundsException("rec.recommender.ranking.topn should be more than 0!"); } } earlyStop = conf.getBoolean("rec.recommender.earlystop", false); verbose = conf.getBoolean("rec.recommender.verbose", true); trainMatrix = (SparseMatrix) getDataModel().getTrainDataSet(); testMatrix = (SparseMatrix) getDataModel().getTestDataSet(); validMatrix = (SparseMatrix) getDataModel().getValidDataSet(); userMappingData = getDataModel().getUserMappingData(); itemMappingData = getDataModel().getItemMappingData(); numUsers = trainMatrix.numRows(); numItems = trainMatrix.numColumns(); numRates = trainMatrix.size(); ratingScale = new ArrayList<>(trainMatrix.getValueSet()); Collections.sort(ratingScale); maxRate = Collections.max(trainMatrix.getValueSet()); minRate = Collections.min(trainMatrix.getValueSet()); globalMean = trainMatrix.mean(); int[] numDroppedItemsArray = new int[numUsers]; // for AUCEvaluator int maxNumTestItemsByUser = 0; //for idcg for (int userIdx = 0; userIdx < numUsers; ++userIdx) { numDroppedItemsArray[userIdx] = numItems - trainMatrix.rowSize(userIdx); int numTestItemsByUser = testMatrix.rowSize(userIdx); maxNumTestItemsByUser = maxNumTestItemsByUser < numTestItemsByUser ? numTestItemsByUser : maxNumTestItemsByUser; } conf.setInts("rec.eval.auc.dropped.num", numDroppedItemsArray); conf.setInt("rec.eval.item.test.maxnum", maxNumTestItemsByUser); } /** * train Model * * @throws LibrecException if error occurs during training model */ protected abstract void trainModel() throws LibrecException; /** * recommend * * @param context recommender context * @throws LibrecException if error occurs during recommending */ public void recommend(RecommenderContext context) throws LibrecException { this.context = context; setup(); LOG.info("Job Setup completed."); trainModel(); LOG.info("Job Train completed."); this.recommendedList = recommend(); LOG.info("Job End."); cleanup(); } /** * recommend * * predict the ranking scores or ratings in the test data * * @return predictive ranking score or rating matrix * @throws LibrecException if error occurs during recommending */ protected RecommendedList recommend() throws LibrecException { if (isRanking && topN > 0) { recommendedList = recommendRank(); } else { recommendedList = recommendRating(); } return recommendedList; } /** * recommend * * predict the ranking scores in the test data * * @return predictive rating matrix * @throws LibrecException if error occurs during recommending */ protected RecommendedList recommendRank() throws LibrecException { recommendedList = new RecommendedItemList(numUsers - 1, numUsers); for (int userIdx = 0; userIdx < numUsers; ++userIdx) { Set itemSet = trainMatrix.getColumnsSet(userIdx); for (int itemIdx = 0; itemIdx < numItems; ++itemIdx) { if (itemSet.contains(itemIdx)) { continue; } double predictRating = predict(userIdx, itemIdx); if (Double.isNaN(predictRating)) { continue; } recommendedList.addUserItemIdx(userIdx, itemIdx, predictRating); } recommendedList.topNRankItemsByUser(userIdx, topN); } if(recommendedList.size()==0){ throw new IndexOutOfBoundsException("No item is recommended, there is something error in the recommendation algorithm! Please check it!"); } return recommendedList; } /** * recommend * * predict the ratings in the test data * * @return predictive rating matrix * @throws LibrecException if error occurs during recommending */ protected RecommendedList recommendRating() throws LibrecException { recommendedList = new RecommendedItemList(numUsers - 1, numUsers); for (MatrixEntry matrixEntry : testMatrix) { int userIdx = matrixEntry.row(); int itemIdx = matrixEntry.column(); double predictRating = predict(userIdx, itemIdx, true); if (Double.isNaN(predictRating)) { predictRating = globalMean; } recommendedList.addUserItemIdx(userIdx, itemIdx, predictRating); } return recommendedList; } /** * predict a specific rating for user userIdx on item itemIdx, note that the * prediction is not bounded. It is useful for building models with no need * to bound predictions. * * @param userIdx user index * @param itemIdx item index * @return predictive rating for user userIdx on item itemIdx without bound * @throws LibrecException if error occurs during predicting */ protected abstract double predict(int userIdx, int itemIdx) throws LibrecException; /** * predict a specific rating for user userIdx on item itemIdx. It is useful for evalution which requires predictions are * bounded. * * @param userIdx user index * @param itemIdx item index * @param bound whether there is a bound * @return predictive rating for user userIdx on item itemIdx with bound * @throws LibrecException if error occurs during predicting */ protected double predict(int userIdx, int itemIdx, boolean bound) throws LibrecException { double predictRating = predict(userIdx, itemIdx); if (bound) { if (predictRating > maxRate) { predictRating = maxRate; } else if (predictRating < minRate) { predictRating = minRate; } } return predictRating; } /** * evaluate * * @param evaluator recommender evaluator * @throws LibrecException if error occurs during evaluating */ public double evaluate(RecommenderEvaluator evaluator) throws LibrecException { return evaluator.evaluate(context, recommendedList); } /** * evaluate Map * * @return evaluate map * @throws LibrecException if error occurs during constructing evaluate map */ public Map evaluateMap() throws LibrecException { Map evaluatedMap = new HashMap<>(); List measureValueList = Measure.getMeasureEnumList(isRanking, topN); if (measureValueList != null) { for (MeasureValue measureValue : measureValueList) { RecommenderEvaluator evaluator = ReflectionUtil .newInstance(measureValue.getMeasure().getEvaluatorClass()); if (isRanking && measureValue.getTopN() != null && measureValue.getTopN() > 0) { evaluator.setTopN(measureValue.getTopN()); } double evaluatedValue = evaluator.evaluate(context, recommendedList); evaluatedMap.put(measureValue, evaluatedValue); } } return evaluatedMap; } /** * cleanup * * @throws LibrecException if error occurs during cleanup */ protected void cleanup() throws LibrecException { } /** * (non-Javadoc) * * @see net.librec.recommender.Recommender#loadModel(String) */ @Override public void loadModel(String filePath) { } /** * (non-Javadoc) * * @see net.librec.recommender.Recommender#saveModel(String) */ @Override public void saveModel(String filePath) { } /** * get Context * * @return recommender context */ protected RecommenderContext getContext() { return context; } /** * set Context * * @param context recommender context */ public void setContext(RecommenderContext context) { this.context = context; } /** * get Data Model * * @return data model */ public DataModel getDataModel() { return context.getDataModel(); } /** * get Recommended List * * @return Recommended List */ public List getRecommendedList() { if (recommendedList != null && recommendedList.size() > 0) { List userItemList = new ArrayList<>(); Iterator recommendedEntryIter = recommendedList.entryIterator(); if (userMappingData != null && userMappingData.size() > 0 && itemMappingData != null && itemMappingData.size() > 0) { BiMap userMappingInverse = userMappingData.inverse(); BiMap itemMappingInverse = itemMappingData.inverse(); while (recommendedEntryIter.hasNext()) { UserItemRatingEntry userItemRatingEntry = recommendedEntryIter.next(); if (userItemRatingEntry != null) { String userId = userMappingInverse.get(userItemRatingEntry.getUserIdx()); String itemId = itemMappingInverse.get(userItemRatingEntry.getItemIdx()); if (StringUtils.isNotBlank(userId) && StringUtils.isNotBlank(itemId)) { userItemList.add(new GenericRecommendedItem(userId, itemId, userItemRatingEntry.getValue())); } } } return userItemList; } } return null; } /** * Post each iteration, we do things: *

    *
  1. print debug information
  2. *
  3. check if converged
  4. *
  5. if not, adjust learning rate
  6. *
* @param iter current iteration * @return boolean: true if it is converged; false otherwise * @throws LibrecException if error occurs */ protected boolean isConverged(int iter) throws LibrecException{ float delta_loss = (float) (lastLoss - loss); // print out debug info if (verbose) { String recName = getClass().getSimpleName().toString(); String info = recName + " iter " + iter + ": loss = " + loss + ", delta_loss = " + delta_loss; LOG.info(info); } if (Double.isNaN(loss) || Double.isInfinite(loss)) { // LOG.error("Loss = NaN or Infinity: current settings does not fit the recommender! Change the settings and try again!"); throw new LibrecException("Loss = NaN or Infinity: current settings does not fit the recommender! Change the settings and try again!"); } // check if converged boolean converged = Math.abs(loss) < 1e-5; return converged; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy