All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.recommender.SocialRecommender Maven / Gradle / Ivy

/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.recommender; import net.librec.common.LibrecException; import net.librec.data.convertor.appender.SocialDataAppender; import net.librec.math.algorithm.Maths; import net.librec.math.structure.SparseMatrix; /** * Social Recommender * * @author Keqiang Wang */ public abstract class SocialRecommender extends MatrixFactorizationRecommender { /** * socialMatrix: social rate matrix, indicating a user is connecting to a number of other users */ protected SparseMatrix socialMatrix; /** * social regularization */ protected float regSocial; @Override public void setup() throws LibrecException { super.setup(); regSocial = conf.getFloat("rec.social.regularization", 0.01f); // social path for the socialMatrix socialMatrix = ((SocialDataAppender) getDataModel().getDataAppender()).getUserAppender(); } @Override protected double predict(int userIdx, int itemIdx, boolean bounded) throws LibrecException { double predictRating = predict(userIdx, itemIdx); if (bounded) return denormalize(Maths.logistic(predictRating)); return predictRating; } /** * denormalize a prediction to the region (minRate, maxRate) * * @param predictRating a prediction to the region (minRate, maxRate) * @return a denormalized prediction to the region (minRate, maxRate) */ protected double denormalize(double predictRating) { return minRate + predictRating * (maxRate - minRate); } /** * normalize a rating to the region (0, 1) * * @param rating a given rating * @return a normalized rating */ protected double normalize(double rating) { return (rating - minRate) / (maxRate - minRate); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy