net.librec.recommender.baseline.MostPopularRecommender Maven / Gradle / Ivy
// Copyright (C) 2014 Guibing Guo
//
// This file is part of LibRec.
//
// LibRec is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// LibRec is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with LibRec. If not, see .
//
package net.librec.recommender.baseline;
import net.librec.common.LibrecException;
import net.librec.recommender.AbstractRecommender;
import java.util.HashMap;
import java.util.Map;
/**
* Baseline: items are weighted by the number of ratings they received.
*/
public class MostPopularRecommender extends AbstractRecommender {
/**
* most popular items
*/
private Map itemPops;
@Override
protected void setup() throws LibrecException {
super.setup();
itemPops = new HashMap<>();
}
@Override
protected void trainModel() throws LibrecException {
}
/**
* The rated count as the predictive ranking score for user userIdx on item itemIdx.
*
* @param userIdx user index
* @param itemIdx item index
* @return predictive rating for user userIdx on item itemIdx
* @throws LibrecException if error occurs during predicting
*/
@Override
protected double predict(int userIdx, int itemIdx) throws LibrecException {
if (!itemPops.containsKey(itemIdx))
itemPops.put(itemIdx, trainMatrix.columnSize(itemIdx));
return itemPops.get(itemIdx);
}
}