All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.recommender.context.rating.SocialMFRecommender Maven / Gradle / Ivy

/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.recommender.context.rating; import net.librec.annotation.ModelData; import net.librec.common.LibrecException; import net.librec.math.algorithm.Maths; import net.librec.math.structure.DenseMatrix; import net.librec.math.structure.MatrixEntry; import net.librec.math.structure.SparseVector; import net.librec.recommender.SocialRecommender; /** * Jamali and Ester, A matrix factorization technique with trust propagation for recommendation in social * networks, RecSys 2010. * * @author guoguibing and Keqiang Wang */ @ModelData({"isRating", "socialmf", "userFactors", "itemFactors"}) public class SocialMFRecommender extends SocialRecommender { @Override public void setup() throws LibrecException { super.setup(); userFactors.init(1.0); itemFactors.init(1.0); } @Override protected void trainModel() throws LibrecException { for (int iter = 1; iter <= numIterations; iter++) { loss = 0.0d; DenseMatrix tempUserFactors = new DenseMatrix(numUsers, numFactors); DenseMatrix tempItemFactors = new DenseMatrix(numItems, numFactors); // rated items for (MatrixEntry matrixEntry : trainMatrix) { int userIdx = matrixEntry.row(); int itemIdx = matrixEntry.column(); double rating = matrixEntry.get(); double predictRating = predict(userIdx, itemIdx, false); double error = Maths.logistic(predictRating) - normalize(rating); loss += error * error; double deriValue = Maths.logisticGradientValue(predictRating) * error; for (int factorIdx = 0; factorIdx < numFactors; factorIdx++) { double userFactorValue = userFactors.get(userIdx, factorIdx); double itemFactorValue = itemFactors.get(itemIdx, factorIdx); tempUserFactors.add(userIdx, factorIdx, deriValue * itemFactorValue + regUser * userFactorValue); tempItemFactors.add(itemIdx, factorIdx, deriValue * userFactorValue + regItem * itemFactorValue); loss += regUser * userFactorValue * userFactorValue + regItem * itemFactorValue * itemFactorValue; } } // social regularization for (int userIdx = 0; userIdx < numUsers; userIdx++) { SparseVector userTrustVector = socialMatrix.row(userIdx); int numTrust = userTrustVector.getCount(); if (numTrust == 0) continue; double[] sumNNs = new double[numFactors]; for (int trustUserIdx : userTrustVector.getIndex()) { for (int factorIdx = 0; factorIdx < numFactors; factorIdx++) sumNNs[factorIdx] += socialMatrix.get(userIdx, trustUserIdx) * userFactors.get(trustUserIdx, factorIdx); } for (int factorIdx = 0; factorIdx < numFactors; factorIdx++) { double diffValue = userFactors.get(userIdx, factorIdx) - sumNNs[factorIdx] / numTrust; tempUserFactors.add(userIdx, factorIdx, regSocial * diffValue); loss += regSocial * diffValue * diffValue; } // those who trusted user u SparseVector userTrustedVector = socialMatrix.column(userIdx); int numTrusted = userTrustedVector.getCount(); for (int trustedUserIdx : userTrustedVector.getIndex()) { double trustedValue = socialMatrix.get(trustedUserIdx, userIdx); SparseVector trustedTrustVector = socialMatrix.row(trustedUserIdx); double[] sumDiffs = new double[numFactors]; for (int trustedTrustUserIdx : trustedTrustVector.getIndex()) { for (int factorIdx = 0; factorIdx < numFactors; factorIdx++) sumDiffs[factorIdx] += socialMatrix.get(trustedUserIdx, trustedTrustUserIdx) * userFactors.get(trustedTrustUserIdx, factorIdx); } numTrust = trustedTrustVector.getCount(); if (numTrust > 0) for (int factorIdx = 0; factorIdx < numFactors; factorIdx++) tempUserFactors.add(userIdx, factorIdx, -regSocial * (trustedValue / numTrusted) * (userFactors.get(trustedUserIdx, factorIdx) - sumDiffs[factorIdx] / numTrust)); } } // update user factors userFactors = userFactors.add(tempUserFactors.scale(-learnRate)); itemFactors = itemFactors.add(tempItemFactors.scale(-learnRate)); loss *= 0.5d; if (isConverged(iter) && earlyStop) { break; } updateLRate(iter); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy