All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.recommender.ext.AssociationRuleRecommender Maven / Gradle / Ivy

/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.recommender.ext; import com.google.common.cache.LoadingCache; import com.google.common.collect.HashBasedTable; import com.google.common.collect.Table; import net.librec.common.LibrecException; import net.librec.math.structure.SparseVector; import net.librec.math.structure.VectorEntry; import net.librec.recommender.AbstractRecommender; import java.util.Map; import java.util.concurrent.ExecutionException; /** * Choonho Kim and Juntae Kim, A Recommendation Algorithm Using Multi-Level Association Rules, WI 2003. *

* Simple Association Rule Recommender: we do not consider the item categories (or multi levels) used in the original * paper. Besides, we consider all association rules without ruling out weak ones (by setting high support and * confidence threshold). * * @author guoguibing and wangkeqiang */ public class AssociationRuleRecommender extends AbstractRecommender { /** * confidence matrix of association rules */ private Table associationTable; /** * user-vector cache, item-vector cache */ protected LoadingCache userCache; /** * Guava cache configuration */ protected static String cacheSpec; /** * setup * * @throws LibrecException if error occurs */ @Override protected void setup() throws LibrecException { super.setup(); cacheSpec = conf.get("guava.cache.spec", "maximumSize=200,expireAfterAccess=2m"); associationTable = HashBasedTable.create(numItems, numItems); userCache = trainMatrix.rowCache(cacheSpec); } @Override protected void trainModel() throws LibrecException { // simple rule: X => Y, given that each user vector is regarded as a transaction for (int itemIdx = 0; itemIdx < numItems; itemIdx++) { // all transactions for item itemIdx SparseVector userRatingsVector = trainMatrix.column(itemIdx); int userCount = userRatingsVector.size(); for (int assoItemIdx = 0; assoItemIdx < numItems; assoItemIdx++) { // compute confidence where containing item assoItemIdx among userRatingsVector int count = 0; for (VectorEntry vectorEntry : userRatingsVector) { int userIdx = vectorEntry.index(); double assoRatings = trainMatrix.get(userIdx, assoItemIdx); if (assoRatings > 0) count++; } if (count > 0) { double conf = (count + 0.0) / userCount; associationTable.put(itemIdx, assoItemIdx, conf); } } } } /** * predict a specific rating for user userIdx on item itemIdx. * * @param userIdx user index * @param itemIdx item index * @return predictive rating for user userIdx on item itemIdx * @throws LibrecException if error occurs */ @Override protected double predict(int userIdx, int itemIdx) throws LibrecException { SparseVector itemRatingsVector = null; try { itemRatingsVector = userCache.get(userIdx); } catch (ExecutionException e) { e.printStackTrace(); } double predictRatings = 0; for (Map.Entry mapEntry : associationTable.column(itemIdx).entrySet()) { int assoItemIdx = mapEntry.getKey(); double support = mapEntry.getValue(); predictRatings += itemRatingsVector.get(assoItemIdx) * support; } return predictRatings; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy