net.librec.similarity.CPCSimilarity Maven / Gradle / Ivy
/**
* Copyright (C) 2016 LibRec
*
* This file is part of LibRec.
* LibRec is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LibRec is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LibRec. If not, see .
*/
package net.librec.similarity;
import net.librec.data.DataModel;
import net.librec.math.structure.MatrixEntry;
import net.librec.math.structure.SparseMatrix;
import java.util.List;
/**
* Constrained Pearson Correlation (CPC)
*
* @author zhanghaidong
*/
public class CPCSimilarity extends AbstractRecommenderSimilarity {
private double median;
/**
* Build social similarity matrix with trainMatrix in dataModel.
*
* @param dataModel
* the input data model
*/
public void buildSimilarityMatrix(DataModel dataModel) {
SparseMatrix trainMatrix = dataModel.getDataSplitter().getTrainData();
double maximum = 0.0;
double minimum = 100.0;
for (MatrixEntry me : trainMatrix) {
if (me.get() > maximum) {
maximum = me.get();
}
if (me.get() < minimum) {
minimum = me.get();
}
}
median = (maximum + minimum) / 2;
super.buildSimilarityMatrix(dataModel);
}
/**
* Calculate the similarity between thisList and thatList.
*
* @param thisList
* this list
* @param thatList
* that list
* @return similarity
*/
protected double getSimilarity(List extends Number> thisList, List extends Number> thatList) {
// compute similarity
if (thisList == null || thatList == null || thisList.size() < 1 || thatList.size() < 1 || thisList.size() != thatList.size()) {
return Double.NaN;
}
double innerProduct = 0.0, thisPower2 = 0.0, thatPower2 = 0.0;
for (int i = 0; i < thisList.size(); i++) {
double thisDiff = thisList.get(i).doubleValue() - median;
double thatDiff = thatList.get(i).doubleValue() - median;
innerProduct += thisDiff * thatDiff;
thisPower2 += thisDiff * thisDiff;
thatPower2 += thatDiff * thatDiff;
}
return innerProduct / Math.sqrt(thisPower2 * thatPower2);
}
}