All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.librec.similarity.CPCSimilarity Maven / Gradle / Ivy

/**
 * Copyright (C) 2016 LibRec
 * 

* This file is part of LibRec. * LibRec is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. *

* LibRec is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. *

* You should have received a copy of the GNU General Public License * along with LibRec. If not, see . */ package net.librec.similarity; import net.librec.data.DataModel; import net.librec.math.structure.MatrixEntry; import net.librec.math.structure.SparseMatrix; import java.util.List; /** * Constrained Pearson Correlation (CPC) * * @author zhanghaidong */ public class CPCSimilarity extends AbstractRecommenderSimilarity { private double median; /** * Build social similarity matrix with trainMatrix in dataModel. * * @param dataModel * the input data model */ public void buildSimilarityMatrix(DataModel dataModel) { SparseMatrix trainMatrix = dataModel.getDataSplitter().getTrainData(); double maximum = 0.0; double minimum = 100.0; for (MatrixEntry me : trainMatrix) { if (me.get() > maximum) { maximum = me.get(); } if (me.get() < minimum) { minimum = me.get(); } } median = (maximum + minimum) / 2; super.buildSimilarityMatrix(dataModel); } /** * Calculate the similarity between thisList and thatList. * * @param thisList * this list * @param thatList * that list * @return similarity */ protected double getSimilarity(List thisList, List thatList) { // compute similarity if (thisList == null || thatList == null || thisList.size() < 1 || thatList.size() < 1 || thisList.size() != thatList.size()) { return Double.NaN; } double innerProduct = 0.0, thisPower2 = 0.0, thatPower2 = 0.0; for (int i = 0; i < thisList.size(); i++) { double thisDiff = thisList.get(i).doubleValue() - median; double thatDiff = thatList.get(i).doubleValue() - median; innerProduct += thisDiff * thatDiff; thisPower2 += thisDiff * thisDiff; thatPower2 += thatDiff * thatDiff; } return innerProduct / Math.sqrt(thisPower2 * thatPower2); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy