net.librec.similarity.KRCCSimilarity Maven / Gradle / Ivy
/**
* Copyright (C) 2016 LibRec
*
* This file is part of LibRec.
* LibRec is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* LibRec is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with LibRec. If not, see .
*/
package net.librec.similarity;
import net.librec.math.structure.SparseVector;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
/**
* J. I. Marden, Analyzing and modeling rank data. Boca Raton, Florida: CRC Press, 1996.
* Mingming Chen etc. A Ranking-oriented Hybrid Approach to QoS-aware Web Service Recommendation. 2015
*
* Kendall Rank Correlation Coefficient
*
* @author zhanghaidong
*/
public class KRCCSimilarity extends AbstractRecommenderSimilarity {
/**
* Find the common rated items by this user and that user, or the common
* users have rated this item or that item. And then return the similarity.
*
* @param thisVector:
* the rated items by this user, or users that have rated this
* item .
* @param thatVector:
* the rated items by that user, or users that have rated that
* item.
* @return similarity
*/
public double getCorrelation(SparseVector thisVector, SparseVector thatVector) {
if (thisVector == null || thatVector == null || thisVector.size() != thatVector.size()) {
return Double.NaN;
}
// compute similarity
List thisList = new ArrayList();
List thatList = new ArrayList();
for (Integer idx : thatVector.getIndex()) {
thisList.add(thisVector.get(idx));
thatList.add(thatVector.get(idx));
}
return getSimilarity(thisList, thatList);
}
/**
* Calculate the similarity between thisList and thatList.
*
* @param thisList
* this list
* @param thatList
* that list
* @return similarity
*/
protected double getSimilarity(List extends Number> thisList, List extends Number> thatList) {
if (thisList == null || thatList == null || thisList.size() < 2 || thatList.size() < 2) {
return Double.NaN;
}
Set commonIndices = new HashSet();
for (int i = 0; i < thisList.size(); i++) {
if (thisList.get(i).doubleValue() > 0.0 && thatList.get(i).doubleValue() > 0.0) {
commonIndices.add(i);
}
}
int numCommonIndices = commonIndices.size();
if (numCommonIndices < 2) {
return Double.NaN;
}
List commonIndexList = new ArrayList(commonIndices);
double sum = 0.0;
for (int i = 0; i < commonIndexList.size(); i++) {
for (int j = i + 1; j < commonIndexList.size(); j++) {
double thisDiff = thisList.get(commonIndexList.get(i)).doubleValue() - thisList.get(commonIndexList.get(j)).doubleValue();
double thatDiff = thatList.get(commonIndexList.get(i)).doubleValue() - thatList.get(commonIndexList.get(j)).doubleValue();
if (thisDiff * thatDiff < 0.0) {
sum += 1.0;
}
}
}
return 1.0 - 4.0 * sum / (numCommonIndices * (numCommonIndices - 1));
}
}