net.maizegenetics.analysis.data.PrincipalComponentsPlugin Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.data;
import java.awt.Frame;
import java.net.URL;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Optional;
import java.util.stream.Stream;
import javax.swing.ImageIcon;
import org.apache.log4j.Logger;
import com.google.common.collect.Range;
import net.maizegenetics.analysis.numericaltransform.ImputationPlugin;
import net.maizegenetics.analysis.numericaltransform.NumericalGenotypePlugin;
import net.maizegenetics.dna.snp.GenotypeTable;
import net.maizegenetics.dna.snp.score.ReferenceProbability;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
import net.maizegenetics.phenotype.NumericAttribute;
import net.maizegenetics.phenotype.Phenotype;
import net.maizegenetics.phenotype.PhenotypeBuilder;
import net.maizegenetics.phenotype.TaxaAttribute;
import net.maizegenetics.phenotype.Phenotype.ATTRIBUTE_TYPE;
import net.maizegenetics.phenotype.PhenotypeAttribute;
import net.maizegenetics.plugindef.AbstractPlugin;
import net.maizegenetics.plugindef.DataSet;
import net.maizegenetics.plugindef.Datum;
import net.maizegenetics.plugindef.GeneratePluginCode;
import net.maizegenetics.plugindef.PluginParameter;
import net.maizegenetics.stats.PCA.PrinComp;
import net.maizegenetics.stats.PCA.PrinComp.PC_TYPE;
import net.maizegenetics.util.OpenBitSet;
import net.maizegenetics.util.SimpleTableReport;
public class PrincipalComponentsPlugin extends AbstractPlugin {
private static final Logger myLogger = Logger.getLogger(PrincipalComponentsPlugin.class);
public static enum PCA_LIMIT {number_of_components, min_eigenvalue, total_variance};
private PluginParameter useCovariance = new PluginParameter.Builder<>("covariance", true, Boolean.class)
.description("If the box is checked, then the analysis will do an eigenvalue decomposition of the covariance matrix. "
+ "If the box is unchecked, it will use a correlation matrix. Using the covariance matrix "
+ "is recommended for genotypes while the correlation matrix is often used for phenotypes.")
.guiName("covariance (alternative = correlation)")
.build();
private PluginParameter limitBy = new PluginParameter.Builder<>("limitBy", PCA_LIMIT.number_of_components, PCA_LIMIT.class)
.description("This parameter determines the type of value that will be used to limit the number of principal components (axes) returned. "
+ "The possible choices are number_of_components, min_eigenvalue, and total_variance.")
.guiName("limit number of components by")
.build();
private PluginParameter numberOfComponents = new PluginParameter.Builder<>("ncomponents", 5, Integer.class)
.description("The analysis will return this many principal components up to the number of taxa.")
.guiName("number of components")
.dependentOnParameter(limitBy, PCA_LIMIT.number_of_components)
.build();
private PluginParameter minEigenval = new PluginParameter.Builder<>("minEigenval", 0.0, Double.class)
.description("All principal components with an eigenvalue greater than or equal to this value will be returned.")
.guiName("minimum eigenvalue")
.dependentOnParameter(limitBy, PCA_LIMIT.min_eigenvalue)
.build();
private PluginParameter totalVar = new PluginParameter.Builder<>("totalVar", 0.5, Double.class)
.description("The first principal components that together explain this proportion of the total variance will be returned.")
.range(Range.closed(0.0, 1.0))
.guiName("total variance")
.dependentOnParameter(limitBy, PCA_LIMIT.total_variance)
.build();
private PluginParameter reportEigenvalues = new PluginParameter.Builder<>("reportEigenvalues", true, Boolean.class)
.description("Returns a list of eigenvalues sorted high to low.")
.guiName("Return Eigenvalues")
.build();
private PluginParameter reportEigenvectors = new PluginParameter.Builder<>("reportEigenvectors", true, Boolean.class)
.description("Returns the eigenvectors calculated from a Singular Value Decomposition of the data. The resulting table can be quite large if the number of variants and taxa are big.")
.guiName("Return Eigenvectors")
.build();
public PrincipalComponentsPlugin(Frame parentFrame, boolean isInteractive) {
super(parentFrame, isInteractive);
}
public DataSet processData(DataSet input){
List myResults = new ArrayList<>();
List myData = input.getDataOfType(new Class[]{Phenotype.class, GenotypeTable.class});
for (Datum aDatum : myData) {
if (aDatum.getData() instanceof Phenotype) {
//check for missing values, throw an IllegalArgumentException if there is any missing data
Phenotype myPhenotype = (Phenotype) aDatum.getData();
if (areAnyPhenotypesMissing(myPhenotype.dataAttributeStream())) {
StringBuilder msgBuilder = new StringBuilder();
msgBuilder.append("There are missing values in ")
.append(aDatum.getName())
.append(". PCA will not be run.");
throw new IllegalArgumentException(msgBuilder.toString());
}
//create the matrix, rows are observations, columns are data attributes
List dataAttributes = myPhenotype.attributeListOfType(ATTRIBUTE_TYPE.data);
int nAttributes = dataAttributes.size();
int nobs = myPhenotype.numberOfObservations();
DoubleMatrix dataMatrix = DoubleMatrixFactory.DEFAULT.make(nobs, nAttributes);
int colCount = 0;
for (PhenotypeAttribute attr: dataAttributes) {
float[] colData = ((NumericAttribute) attr).floatValues();
for (int i = 0; i < nobs; i++) dataMatrix.set(i, colCount, colData[i]);
colCount++;
}
//run PCA
PC_TYPE pctype;
if (useCovariance.value()) pctype = PC_TYPE.cov;
else pctype = PC_TYPE.corr;
PrinComp pca = new PrinComp(dataMatrix, pctype);
//get results
myResults.addAll(addResultsToDatumList(pca, myPhenotype.taxaAttribute(), dataAttributes, aDatum.getName()));
} else {
GenotypeTable myGenotype = (GenotypeTable) aDatum.getData();
//is there a reference probability? If not, create one and impute missing values
if (!myGenotype.hasReferenceProbablity()) {
myGenotype = NumericalGenotypePlugin.setAlternateMinorAllelesToMinor(myGenotype);
DataSet myDataset = new DataSet(new Datum("name", myGenotype, "comment"), this);
ImputationPlugin myImputer = new ImputationPlugin(null, false);
myImputer.by_mean(true);
DataSet imputedDataset = myImputer.performFunction(myDataset);
myGenotype = (GenotypeTable) imputedDataset.getData(0).getData();
} else if (areAnyGenotypesMissingInReferenceProbability(myGenotype)) {
StringBuilder msgBuilder = new StringBuilder();
msgBuilder.append("There are missing values in ")
.append(aDatum.getName())
.append(". PCA will not be run.");
throw new IllegalArgumentException(msgBuilder.toString());
}
//create the matrix, rows are taxa, columns are sites
int ntaxa = myGenotype.numberOfTaxa();
int nsites = myGenotype.numberOfSites();
DoubleMatrix dataMatrix = DoubleMatrixFactory.DEFAULT.make(ntaxa, nsites);
for (int t = 0; t < ntaxa; t++) {
for (int s = 0; s < nsites; s++) {
dataMatrix.set(t, s, myGenotype.referenceProbability(t, s));
}
}
//run PCA
PC_TYPE pctype;
if (useCovariance.value()) pctype = PC_TYPE.cov;
else pctype = PC_TYPE.corr;
PrinComp pca = new PrinComp(dataMatrix, pctype);
//get results
myResults.addAll(addResultsToDatumList(pca, myGenotype, aDatum.getName()));
}
}
return new DataSet(myResults, this);
}
private boolean areAnyPhenotypesMissing(Stream attributes) {
Optional na = attributes.filter(a -> a.missing().cardinality() > 0).findAny();
return na.isPresent();
}
private boolean areAnyGenotypesMissingInReferenceProbability(GenotypeTable myGenotype) {
int ntaxa = myGenotype.numberOfTaxa();
int nsites = myGenotype.numberOfSites();
ReferenceProbability refprob = myGenotype.referenceProbability();
for (int s = 0; s < nsites; s++) {
for (int t = 0; t < ntaxa; t++) {
if (Float.isNaN(refprob.value(t, s))) return true;
}
}
return false;
}
private List addResultsToDatumList(PrinComp pca, TaxaAttribute myTaxa, List data, String datasetName) {
List results = new ArrayList<>();
//determine how many pc's to return
int numberOfPCs;
double[] eigenvalues = pca.getEigenValues();
int nvalues = eigenvalues.length;
double[] cumulativeEigenvalues = Arrays.copyOf(eigenvalues, nvalues);
for (int i = 1; i < nvalues; i++) {
cumulativeEigenvalues[i] += cumulativeEigenvalues[i - 1];
}
if (limitBy.value() == PCA_LIMIT.number_of_components) {
numberOfPCs = Math.min(numberOfComponents.value(), nvalues);
} else if (limitBy.value() == PCA_LIMIT.total_variance) {
double limit = totalVar.value() * cumulativeEigenvalues[nvalues - 1];
int ndx = Arrays.binarySearch(cumulativeEigenvalues, limit);
if (ndx < -1) numberOfPCs = - ndx;
else numberOfPCs = ndx + 1;
numberOfPCs = Math.min(numberOfPCs, nvalues);
} else { //min_eigenvalue
int ndx = Arrays.binarySearch(eigenvalues, minEigenval.value());
if (ndx < -1) numberOfPCs = - ndx;
else numberOfPCs = ndx + 1;
numberOfPCs = Math.min(numberOfPCs, nvalues);
}
//create a Phenotype with the requested number of PCs
DoubleMatrix pcs = pca.getPrincipalComponents();
List attributes = new ArrayList<>();
List types = new ArrayList<>();
attributes.add(myTaxa);
types.add(ATTRIBUTE_TYPE.taxa);
int ntaxa = myTaxa.size();
for (int i = 0; i < numberOfPCs; i++) {
String pcname = "PC" + (i + 1);
float[] pcvalue = new float[ntaxa];
for (int t = 0; t < ntaxa; t++) {
pcvalue[t] = (float) pcs.get(t, i);
}
NumericAttribute na = new NumericAttribute(pcname, pcvalue, new OpenBitSet(ntaxa));
attributes.add(na);
types.add(ATTRIBUTE_TYPE.covariate);
}
Phenotype pcPhenotype = new PhenotypeBuilder().fromAttributeList(attributes, types).build().get(0);
StringBuilder nameBuilder = new StringBuilder();
nameBuilder.append("PC_").append(datasetName);
StringBuilder commentBuilder = new StringBuilder("\nPrincipalComponents stored as covariates.\n");
commentBuilder.append("calculated from ").append(datasetName);
results.add(new Datum(nameBuilder.toString(), pcPhenotype, commentBuilder.toString()));
//create a tableReport with eigenvalues, if requested
if (reportEigenvalues.value()) {
String name = "Proportion of Variance Explained";
String[] columnNames = new String[]{"PC","eigenvalue","proportion of total","cumulative proportion"};
int nEigenvalues = eigenvalues.length;
Object[][] tableData = new Object[nEigenvalues][4];
double sumvalues = cumulativeEigenvalues[nEigenvalues - 1];
for (int i = 0; i < nEigenvalues; i++) {
tableData[i][0] = String.format("%d",i+1);
tableData[i][1] = new Double(eigenvalues[i]);
tableData[i][2] = new Double(eigenvalues[i]/sumvalues);
tableData[i][3] = new Double(cumulativeEigenvalues[i]/sumvalues);
}
nameBuilder = new StringBuilder();
nameBuilder.append("Eigenvalues_").append(datasetName);
commentBuilder = new StringBuilder("\nEigenvalues and proportion of variance explained by PCs.\n");
commentBuilder.append("calculated from ").append(datasetName);
SimpleTableReport str = new SimpleTableReport(name, columnNames, tableData);
results.add(new Datum(nameBuilder.toString(), str, commentBuilder.toString()));
}
//create a tableReport with eigenvectors, if requested
DoubleMatrix eigenvectors = pca.getEigenVectors();
if (reportEigenvectors.value()) {
String name = "Eigenvectors";
int ncol = numberOfPCs + 1;
int nrows = data.size();
String[] columnNames = new String[ncol];
columnNames[0] = "Trait";
for (int c = 1; c < ncol; c++) columnNames[c] = String.format("Eigenvector%d",c);
Object[][] tableData = new Object[nrows][ncol];
for (int r = 0; r < nrows; r++) {
tableData[r][0] = data.get(r).name();
for (int c = 1; c < ncol; c++) tableData[r][c] = new Double(eigenvectors.get(r, c - 1));
}
nameBuilder = new StringBuilder();
nameBuilder.append("Eigenvectors_").append(datasetName);
commentBuilder = new StringBuilder("\nEigenvectors for requested PCs.\n");
commentBuilder.append("calculated from ").append(datasetName);
SimpleTableReport str = new SimpleTableReport(name, columnNames, tableData);
results.add(new Datum(nameBuilder.toString(), str, commentBuilder.toString()));
}
return results;
}
private List addResultsToDatumList(PrinComp pca, GenotypeTable myGenotype, String datasetName) {
List results = new ArrayList<>();
//determine how many pc's to return
int numberOfPCs;
double[] eigenvalues = pca.getEigenValues();
int nvalues = eigenvalues.length;
double[] cumulativeEigenvalues = Arrays.copyOf(eigenvalues, nvalues);
for (int i = 1; i < nvalues; i++) {
cumulativeEigenvalues[i] += cumulativeEigenvalues[i - 1];
}
if (limitBy.value() == PCA_LIMIT.number_of_components) {
numberOfPCs = Math.min(numberOfComponents.value(), nvalues);
} else if (limitBy.value() == PCA_LIMIT.total_variance) {
double limit = totalVar.value() * cumulativeEigenvalues[nvalues - 1];
int ndx = Arrays.binarySearch(cumulativeEigenvalues, limit);
if (ndx < -1) numberOfPCs = - ndx;
else numberOfPCs = ndx + 1;
numberOfPCs = Math.min(numberOfPCs, nvalues);
} else { //min_eigenvalue
int ndx = Arrays.binarySearch(eigenvalues, minEigenval.value());
if (ndx < -1) numberOfPCs = - ndx;
else numberOfPCs = ndx + 1;
numberOfPCs = Math.min(numberOfPCs, nvalues);
}
//create a Phenotype with the requested number of PCs
DoubleMatrix pcs = pca.getPrincipalComponents();
List attributes = new ArrayList<>();
List types = new ArrayList<>();
attributes.add(new TaxaAttribute(myGenotype.taxa()));
types.add(ATTRIBUTE_TYPE.taxa);
int ntaxa = myGenotype.numberOfTaxa();
for (int i = 0; i < numberOfPCs; i++) {
String pcname = "PC" + (i + 1);
float[] pcvalue = new float[ntaxa];
for (int t = 0; t < ntaxa; t++) {
pcvalue[t] = (float) pcs.get(t, i);
}
NumericAttribute na = new NumericAttribute(pcname, pcvalue, new OpenBitSet(ntaxa));
attributes.add(na);
types.add(ATTRIBUTE_TYPE.covariate);
}
Phenotype pcPhenotype = new PhenotypeBuilder().fromAttributeList(attributes, types).build().get(0);
StringBuilder nameBuilder = new StringBuilder();
nameBuilder.append("PC_").append(datasetName);
StringBuilder commentBuilder = new StringBuilder("\nPrincipalComponents stored as covariates.\n");
commentBuilder.append("calculated from ").append(datasetName);
results.add(new Datum(nameBuilder.toString(), pcPhenotype, commentBuilder.toString()));
//create a tableReport with eigenvalues, if requested
if (reportEigenvalues.value()) {
String name = "Proportion of Variance Explained";
String[] columnNames = new String[]{"PC","eigenvalue","proportion of total","cumulative proportion"};
int nEigenvalues = eigenvalues.length;
Object[][] tableData = new Object[nEigenvalues][4];
double sumvalues = cumulativeEigenvalues[nEigenvalues - 1];
for (int i = 0; i < nEigenvalues; i++) {
tableData[i][0] = String.format("%d",i);
tableData[i][1] = new Double(eigenvalues[i]);
tableData[i][2] = new Double(eigenvalues[i]/sumvalues);
tableData[i][3] = new Double(cumulativeEigenvalues[i]/sumvalues);
}
nameBuilder = new StringBuilder();
nameBuilder.append("Eigenvalues_").append(datasetName);
commentBuilder = new StringBuilder("\nEigenvalues and proportion of variance explained by PCs.\n");
commentBuilder.append("calculated from ").append(datasetName);
SimpleTableReport str = new SimpleTableReport(name, columnNames, tableData);
results.add(new Datum(nameBuilder.toString(), str, commentBuilder.toString()));
}
//create a tableReport with eigenvectors, if requested
DoubleMatrix eigenvectors = pca.getEigenVectors();
if (reportEigenvectors.value()) {
String name = "Eigenvectors";
int ncol = numberOfPCs + 1;
int nrows = myGenotype.numberOfSites();
String[] columnNames = new String[ncol];
columnNames[0] = "Trait";
for (int c = 1; c < ncol; c++) columnNames[c] = String.format("Eigenvector%d",c);
Object[][] tableData = new Object[nrows][ncol];
for (int r = 0; r < nrows; r++) {
tableData[r][0] = myGenotype.positions().siteName(r);
for (int c = 1; c < ncol; c++) tableData[r][c] = new Double(eigenvectors.get(r, c - 1));
}
nameBuilder = new StringBuilder();
nameBuilder.append("Eigenvectors_").append(datasetName);
commentBuilder = new StringBuilder("\nEigenvectors for requested PCs.\n");
commentBuilder.append("calculated from ").append(datasetName);
SimpleTableReport str = new SimpleTableReport(name, columnNames, tableData);
results.add(new Datum(nameBuilder.toString(), str, commentBuilder.toString()));
}
return results;
}
@Override
public String pluginDescription() {
return "This plugin performs principal components analysis and returns the requested number of PC axes (components), and, optionally, the eigenvalues and eigenvectors. "
+ "It can take as input either phenotype data or ReferenceProbability from a GenotypeTable.";
}
@Override
public ImageIcon getIcon() {
URL imageURL = FileLoadPlugin.class.getResource("/net/maizegenetics/analysis/images/pca.gif");
if (imageURL == null) {
return null;
} else {
return new ImageIcon(imageURL);
}
}
@Override
public String getButtonName() {
return "PCA";
}
@Override
public String getToolTipText() {
return "Performs principal components analysis";
}
// The following getters and setters were auto-generated.
// Please use this method to re-generate.
//
// public static void main(String[] args) {
// GeneratePluginCode.generate(PrincipalComponentsPlugin.class);
// }
/**
* Convenience method to run plugin with one return object.
*/
public Phenotype runPlugin(DataSet input) {
return (Phenotype) performFunction(input).getData(0).getData();
}
/**
* If the box is checked, then the analysis will do an
* eigenvalue decomposition of the covariance matrix.
* If the box is unchecked, it will use a correlation
* matrix. Using the covariance matrix is recommended
* for genotypes while the correlation matrix is often
* used for phenotypes.
*
* @return covariance (alternative = correlation)
*/
public Boolean covariance() {
return useCovariance.value();
}
/**
* Set covariance (alternative = correlation). If the
* box is checked, then the analysis will do an eigenvalue
* decomposition of the covariance matrix. If the box
* is unchecked, it will use a correlation matrix. Using
* the covariance matrix is recommended for genotypes
* while the correlation matrix is often used for phenotypes.
*
* @param value covariance (alternative = correlation)
*
* @return this plugin
*/
public PrincipalComponentsPlugin covariance(Boolean value) {
useCovariance = new PluginParameter<>(useCovariance, value);
return this;
}
/**
* This parameter determines the type of value that will
* be used to limit the number of principal components
* (axes) returned. The possible choices are number_of_components,
* min_eigenvalue, and total_variance.
*
* @return limit number of components by
*/
public PCA_LIMIT limitNumberOfComponentsBy() {
return limitBy.value();
}
/**
* Set limit number of components by. This parameter determines
* the type of value that will be used to limit the number
* of principal components (axes) returned. The possible
* choices are number_of_components, min_eigenvalue, and
* total_variance.
*
* @param value limit number of components by
*
* @return this plugin
*/
public PrincipalComponentsPlugin limitNumberOfComponentsBy(PCA_LIMIT value) {
limitBy = new PluginParameter<>(limitBy, value);
return this;
}
/**
* The analysis will return this many principal components
* up to the number of taxa.
*
* @return number of components
*/
public Integer numberOfComponents() {
return numberOfComponents.value();
}
/**
* Set number of components. The analysis will return
* this many principal components up to the number of
* taxa.
*
* @param value number of components
*
* @return this plugin
*/
public PrincipalComponentsPlugin numberOfComponents(Integer value) {
numberOfComponents = new PluginParameter<>(numberOfComponents, value);
return this;
}
/**
* All principal components with an eigenvalue greater
* than or equal to this value will be returned.
*
* @return minimum eigenvalue
*/
public Double minimumEigenvalue() {
return minEigenval.value();
}
/**
* Set minimum eigenvalue. All principal components with
* an eigenvalue greater than or equal to this value will
* be returned.
*
* @param value minimum eigenvalue
*
* @return this plugin
*/
public PrincipalComponentsPlugin minimumEigenvalue(Double value) {
minEigenval = new PluginParameter<>(minEigenval, value);
return this;
}
/**
* The first principal components that together explain
* this proportion of the total variance will be returned.
*
* @return total variance
*/
public Double totalVariance() {
return totalVar.value();
}
/**
* Set total variance. The first principal components
* that together explain this proportion of the total
* variance will be returned.
*
* @param value total variance
*
* @return this plugin
*/
public PrincipalComponentsPlugin totalVariance(Double value) {
totalVar = new PluginParameter<>(totalVar, value);
return this;
}
/**
* Returns a list of eigenvalues sorted high to low.
*
* @return Return Eigenvalues
*/
public Boolean returnEigenvalues() {
return reportEigenvalues.value();
}
/**
* Set Return Eigenvalues. Returns a list of eigenvalues
* sorted high to low.
*
* @param value Return Eigenvalues
*
* @return this plugin
*/
public PrincipalComponentsPlugin returnEigenvalues(Boolean value) {
reportEigenvalues = new PluginParameter<>(reportEigenvalues, value);
return this;
}
/**
* Returns the eigenvectors calculated from a Singular
* Value Decomposition of the data. The resulting table
* can be quite large if the number of variants and taxa
* are big.
*
* @return Return Eigenvectors
*/
public Boolean returnEigenvectors() {
return reportEigenvectors.value();
}
/**
* Set Return Eigenvectors. Returns the eigenvectors calculated
* from a Singular Value Decomposition of the data. The
* resulting table can be quite large if the number of
* variants and taxa are big.
*
* @param value Return Eigenvectors
*
* @return this plugin
*/
public PrincipalComponentsPlugin returnEigenvectors(Boolean value) {
reportEigenvectors = new PluginParameter<>(reportEigenvectors, value);
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy