net.maizegenetics.stats.linearmodels.SweepFastNestedModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.stats.linearmodels;
import java.util.ArrayList;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
public class SweepFastNestedModel {
double markerSS;
double markerdf;
double errorSS;
double errordf;
double taxaSS;
double taxadf;
double modelcfmSS;
double modelcfmdf;
double[] beta;
DoubleMatrix G; //the inverse of X'X
/**
* The constructor for this class. It will calculate the SS and df for marker after all other effects in the model except taxa nested in marker.
* Taxa in marker will then be added to the model and its SS and df calculated. Error SS and df will be the final residual.
* @param marker the ModelEffect for the marker being tested
* @param taxaInMarker the ModelEffect for taxa nested in marker
* @param otherEffects any other effects in the model. The mean is always the first of these.
* @param data the dependent variable
*/
public SweepFastNestedModel(ArrayList modelEffects, double[] data) {
//order to add effects is other, marker, taxaInMarker
int numberOfEffects = modelEffects.size();
DoubleMatrix[][] xtx = new DoubleMatrix[numberOfEffects][numberOfEffects];
DoubleMatrix[] xty = new DoubleMatrix[numberOfEffects];
double yty;
int[] dimX = new int[numberOfEffects];
for (int i = 0; i < numberOfEffects; i++) {
xtx[i][i] = modelEffects.get(i).getXtX();
dimX[i] = xtx[i][i].numberOfColumns();
xty[i] = modelEffects.get(i).getXty(data);
for (int j = i + 1; j < numberOfEffects; j++) {
xtx[i][j] = ModelEffectUtils.getXtY(modelEffects.get(i), modelEffects.get(j));
}
}
yty = 0;
int nobs = data.length;
for (int i = 0; i < nobs; i++) {
yty += data[i] * data[i];
}
SweepFast sf = new SweepFast(xtx, xty, yty);
//assume that the first effect is the mean
sf.revg2sweep(0);
double residualAfterMean = sf.getResidualSS();
sf.setDminFromA();
//now sweep the rest of the other effects up to marker
double dfother = 0;
int col = 1;
for (int i = 1; i < numberOfEffects - 2; i++) {
for (int j = 0; j < dimX[i]; j++) if (sf.revg2sweep(col++)) dfother++;
}
double residualAfterOther = sf.getResidualSS();
//sweep marker
markerdf = 0;
for (int i = 0; i < dimX[numberOfEffects - 2]; i++) {
if (sf.revg2sweep(col++)) markerdf++;
}
double residualAfterMarker = sf.getResidualSS();
//sweep taxa in marker
taxadf = 0;
for (int i = 0; i < dimX[numberOfEffects - 1]; i++) {
if (sf.revg2sweep(col++)) taxadf++;
}
//calculate SS and df needed for output
markerSS = residualAfterOther - residualAfterMarker;
taxaSS = residualAfterMarker - sf.getResidualSS();
modelcfmSS = residualAfterMean - residualAfterMarker;
modelcfmdf = dfother + markerdf;
errordf = data.length - 1 - modelcfmdf;
errorSS = residualAfterMarker;
beta = sf.getBeta();
G = sf.getXTXpart();
}
public double[] getMarkerSSdf() {
return new double[]{markerSS, markerdf};
}
public double[] getErrorSSdf() {
return new double[] {errorSS, errordf};
}
public double[] getTaxaInMarkerSSdf() {
return new double[] {taxaSS, taxadf};
}
public double[] getModelcfmSSdf() {
return new double[] {modelcfmSS, modelcfmdf};
}
public double[] getBeta() {
return beta;
}
public DoubleMatrix getInverseOfXtX() { return G; }
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy