All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.maizegenetics.taxa.tree.NeighborJoiningTree Maven / Gradle / Ivy

Go to download

TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage disequilibrium.

There is a newer version: 5.2.94
Show newest version
// NeighborJoiningTree.java
//
// (c) 1999-2001 PAL Development Core Team
//
// This package may be distributed under the
// terms of the Lesser GNU General Public License (LGPL)
// computational complexity O(numSeqs^3)
package net.maizegenetics.taxa.tree;

import net.maizegenetics.taxa.distance.DistanceMatrix;

/**
 * constructs a neighbor-joining tree from pairwise distances
 * 

* Saitou, N., and Nei, M., (1987) The neighbor-joining method: A new method for * reconstructing phylogenetic trees. Mol. Biol. Evol, 4(4):406-425, *
* * @author Korbinian Strimmer * @author Alexei Drummond */ public class NeighborJoiningTree extends SimpleTree { /** * construct NJ tree * * @param m distance matrix */ public NeighborJoiningTree(DistanceMatrix m) { if (m.getSize() < 3) { throw new IllegalArgumentException("NeighborJoiningTree: Less than 3 taxa in distance matrix."); } if (!m.isSymmetric()) { throw new IllegalArgumentException("NeighborJoiningTree: Unsymmetrix Distance Matrix: Probably due to taxa with large proportion of missing sites."); } init(m); //while (numClusters > 3) while (true) { findNextPair(); newBranchLengths(); if (numClusters == 3) { break; } newCluster(); } finish(); } private int numClusters; private int besti, abi; private int bestj; private int[] alias; private double[][] distance; private double[] r; private double scale; private double getDist(int a, int b) { return distance[alias[a]][alias[b]]; } private void init(DistanceMatrix m) { numClusters = m.getSize(); distance = m.getClonedDistances(); for (int i = 0; i < numClusters; i++) { Node tmp = NodeFactory.createNode(); tmp.setIdentifier(m.getTaxon(i)); getRoot().addChild(tmp); } alias = new int[numClusters]; for (int i = 0; i < numClusters; i++) { alias[i] = i; } r = new double[numClusters]; } private void finish() { if (besti != 0 && bestj != 0) { getRoot().getChild(0).setBranchLength(updatedDistance(besti, bestj, 0)); } else if (besti != 1 && bestj != 1) { getRoot().getChild(1).setBranchLength(updatedDistance(besti, bestj, 1)); } else { getRoot().getChild(2).setBranchLength(updatedDistance(besti, bestj, 2)); } distance = null; // make node heights available also NodeUtils.lengths2Heights(getRoot()); } private void findNextPair() { for (int i = 0; i < numClusters; i++) { r[i] = 0; for (int j = 0; j < numClusters; j++) { r[i] += getDist(i, j); } } besti = 0; bestj = 1; double smax = -1.0; scale = 1.0 / (numClusters - 2); for (int i = 0; i < numClusters - 1; i++) { for (int j = i + 1; j < numClusters; j++) { double sij = (r[i] + r[j]) * scale - getDist(i, j); if (sij > smax) { smax = sij; besti = i; bestj = j; } } } abi = alias[besti]; } private void newBranchLengths() { double dij = getDist(besti, bestj); double li = (dij + (r[besti] - r[bestj]) * scale) * 0.5; double lj = dij - li; // = (dij + (r[bestj]-r[besti])*scale)*0.5 getRoot().getChild(besti).setBranchLength(li); getRoot().getChild(bestj).setBranchLength(lj); } private void newCluster() { // Update distances for (int k = 0; k < numClusters; k++) { if (k != besti && k != bestj) { int ak = alias[k]; distance[ak][abi] = distance[abi][ak] = updatedDistance(besti, bestj, k); } } distance[abi][abi] = 0.0; // Replace besti with new cluster NodeUtils.joinChilds(getRoot(), besti, bestj); // Update alias for (int i = bestj; i < numClusters - 1; i++) { alias[i] = alias[i + 1]; } numClusters--; } /** * compute updated distance between the new cluster (i,j) to any other * cluster k */ private double updatedDistance(int i, int j, int k) { return (getDist(k, i) + getDist(k, j) - getDist(i, j)) * 0.5; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy