net.maizegenetics.analysis.association.CompressedDoubleMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.association;
import java.util.ArrayList;
import java.util.Collections;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
import net.maizegenetics.taxa.distance.DistanceMatrix;
import net.maizegenetics.taxa.tree.Tree;
import net.maizegenetics.taxa.tree.TreeClusters;
public class CompressedDoubleMatrix {
protected DistanceMatrix kinshipMatrix;
protected TreeClusters theClusters;
protected int numberOfGroups;
protected DoubleMatrix adjustmentMatrix;
protected DoubleMatrix compressedMatrix;
protected int[] distance2clusterIndex;
protected int[][] groupMembers;
Tree myTree;
public enum kinshipMethod {avg, min, max, median};
public CompressedDoubleMatrix(DistanceMatrix kinship, Tree theTree) {
kinshipMatrix = kinship;
myTree = theTree;
init();
}
protected void init() {
theClusters = new TreeClusters(myTree);
int nrow = kinshipMatrix.getSize();
distance2clusterIndex = new int[nrow];
for (int i = 0; i < nrow; i++) distance2clusterIndex[i] = myTree.whichIdNumber(kinshipMatrix.getTaxon(i));
}
public int getNumberOfGroups() {
return numberOfGroups;
}
/**
* This sets the number of groups and calculates the output matrices.
* It must be run to set the number of groups before retrieving the compressed and adjustment matrices.
* @param numberOfGroups the number of groups into which the taxa should be compressed
*
* */
public void setNumberOfGroups(int numberOfGroups) {
int nrow = kinshipMatrix.getSize();
int[] clusterIndex = theClusters.getGroups(numberOfGroups);
int maxIndex = 0;
for (int i : clusterIndex) maxIndex = Math.max(maxIndex, i);
int ncol = maxIndex + 1;
this.numberOfGroups = ncol;
adjustmentMatrix = DoubleMatrixFactory.DEFAULT.make(nrow, ncol, 0);
for (int i = 0; i < nrow; i++) {
int thiscol = clusterIndex[distance2clusterIndex[i]];
adjustmentMatrix.set(i, thiscol, 1);
}
groupMembers = new int[ncol][];
for (int i = 0; i < ncol; i++) {
int n = (int) adjustmentMatrix.columnSum(i);
groupMembers[i] = new int[n];
int count = 0;
for (int r = 0; r < nrow; r++) {
if (adjustmentMatrix.get(r, i) == 1) groupMembers[i][count++] = r;
}
}
}
/**
* @param km the kinship method used to calculate the group kinships
* @return the compressed distance matrix for the set number of groups
*/
public DoubleMatrix getCompressedMatrix(kinshipMethod km) {
int ngroups = adjustmentMatrix.numberOfColumns();
compressedMatrix = DoubleMatrixFactory.DEFAULT.make(ngroups, ngroups, 0);
for (int g1 = 0; g1 < ngroups; g1++) {
for (int g2 = g1; g2 < ngroups; g2++) {
ArrayList kinshipCoefficients = new ArrayList();
for (int t1: groupMembers[g1]) {
for (int t2: groupMembers[g2]) {
kinshipCoefficients.add(Double.valueOf(kinshipMatrix.getDistance(t1, t2)));
}
}
double groupDistance = 0;
switch(km) {
case avg:
double n = kinshipCoefficients.size();
double total = 0;
for (Double kc:kinshipCoefficients) total += kc;
groupDistance = total / n;
break;
case min:
groupDistance = kinshipCoefficients.get(0);
for (Double kc:kinshipCoefficients) groupDistance = Math.min(groupDistance, kc);
break;
case max:
groupDistance = kinshipCoefficients.get(0);
for (Double kc:kinshipCoefficients) groupDistance = Math.max(groupDistance, kc);
break;
case median:
Collections.sort(kinshipCoefficients);
int ncoeff = kinshipCoefficients.size();
if (ncoeff % 2 == 0) { //ncoeff is even
int midpoint = ncoeff / 2;
groupDistance = (kinshipCoefficients.get(midpoint) + kinshipCoefficients.get(midpoint - 1))/2;
} else { //ncoeff is odd
int midpoint = (ncoeff - 1)/2;
groupDistance = kinshipCoefficients.get(midpoint);
}
break;
}
compressedMatrix.set(g1, g2, groupDistance);
compressedMatrix.set(g2, g1, groupDistance);
}
}
return compressedMatrix;
}
/**
* @return the matrix used to post-multiply the Z matrix to produce the compressed Z matrix
*/
public DoubleMatrix getAdjustmentMatrix() {
return adjustmentMatrix;
}
public DoubleMatrix getCompressedZKZ(DoubleMatrix Z, kinshipMethod km) {
DoubleMatrix compressedZ = getCompressedZ(Z);
getCompressedMatrix(km);
return compressedZ.mult(compressedMatrix).tcrossproduct(compressedZ);
}
public DoubleMatrix getCompressedZ(DoubleMatrix originalZ) {
return originalZ.mult(adjustmentMatrix);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy