net.maizegenetics.analysis.association.CompressedMLMusingDoubleMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.association;
import net.maizegenetics.analysis.data.ExportPlugin;
import net.maizegenetics.dna.snp.GenotypeTable;
import net.maizegenetics.dna.snp.GenotypeTableUtils;
import net.maizegenetics.dna.snp.NucleotideAlignmentConstants;
import net.maizegenetics.dna.snp.score.SiteScore.SITE_SCORE_TYPE;
import net.maizegenetics.phenotype.GenotypePhenotype;
import net.maizegenetics.phenotype.NumericAttribute;
import net.maizegenetics.phenotype.Phenotype;
import net.maizegenetics.phenotype.PhenotypeAttribute;
import net.maizegenetics.phenotype.PhenotypeBuilder;
import net.maizegenetics.phenotype.TaxaAttribute;
import net.maizegenetics.phenotype.Phenotype.ATTRIBUTE_TYPE;
import net.maizegenetics.plugindef.DataSet;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory.FactoryType;
import net.maizegenetics.taxa.distance.DistanceMatrix;
import net.maizegenetics.util.BitSet;
import net.maizegenetics.util.OpenBitSet;
import net.maizegenetics.util.TableReport;
import net.maizegenetics.util.TableReportBuilder;
import net.maizegenetics.taxa.TaxaList;
import net.maizegenetics.taxa.TaxaListBuilder;
import net.maizegenetics.taxa.Taxon;
import net.maizegenetics.taxa.tree.UPGMATree;
import net.maizegenetics.plugindef.Datum;
import net.maizegenetics.stats.EMMA.EMMAforDoubleMatrix;
import net.maizegenetics.stats.linearmodels.FactorModelEffect;
import net.maizegenetics.stats.linearmodels.LinearModelUtils;
import net.maizegenetics.stats.linearmodels.ModelEffectUtils;
import net.maizegenetics.stats.linearmodels.SweepFast;
import net.maizegenetics.stats.linearmodels.SymmetricMatrixInverterDM;
import org.apache.log4j.Logger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import java.util.stream.Collectors;
import net.maizegenetics.taxa.distance.DistanceMatrixBuilder;
public class CompressedMLMusingDoubleMatrix {
private static final Logger myLogger = Logger.getLogger(CompressedMLMusingDoubleMatrix.class);
private static final List homGenotypes = Arrays.asList("A","C","G","T","Z");
private static final List hetGenotypes = Arrays.asList("R","W","K","Y","S","M","0");
private final boolean useCompression;
private final boolean useP3D;
private final double compression;
private boolean outputResiduals = true;
private final GenotypePhenotype myGenoPheno;
private final Phenotype myPhenotype;
private final GenotypeTable myGenotype;
private final boolean hasGenotype;
private final MLMPlugin parentPlugin;
private final DistanceMatrix kinshipMatrix;
private double resvar, genvar, lnlk;
private boolean testMarkers = true;
private SymmetricMatrixInverterDM Vminus = null;
private String datasetName;
private List factorAttributeList;
private List covariateAttributeList;
private final Phenotype myWeightMatrix;
private final TableReportBuilder siteReportBuilder;
private final TableReportBuilder alleleReportBuilder;
private final TableReportBuilder compressionReportBuilder;
private boolean useGenotypeCalls = true;
private boolean useReferenceProbability = false;
private boolean useAlleleProbabilities = false;
public CompressedMLMusingDoubleMatrix(MLMPlugin parentPlugin, Datum dataset, DistanceMatrix kinshipMatrix, boolean useCompression, boolean useP3D, double compression) {
this.parentPlugin = parentPlugin;
this.kinshipMatrix = kinshipMatrix;
this.useCompression = useCompression;
this.useP3D = useP3D;
this.compression = compression;
this.myWeightMatrix = null;
datasetName = dataset.getName();
if (dataset.getData().getClass().equals(GenotypePhenotype.class)) {
myGenoPheno = (GenotypePhenotype) dataset.getData();
myPhenotype = myGenoPheno.phenotype();
myGenotype = myGenoPheno.genotypeTable();
hasGenotype = true;
} else if (dataset.getData() instanceof Phenotype) {
myGenoPheno = null;
myPhenotype = (Phenotype) dataset.getData();
myGenotype = null;
hasGenotype = false;
} else {
myGenoPheno = null;
myPhenotype = null;
myGenotype = null;
hasGenotype = false;
}
// String[] headerMain = new String[]{"Trait", "Marker", "Locus", "Site", "df", "F", "p", "errordf", "markerR2", "Genetic Var", "Residual Var", "-2LnLikelihood"};
String[] headerMain = new String[]{AssociationConstants.STATS_HEADER_TRAIT, AssociationConstants.STATS_HEADER_MARKER,
AssociationConstants.STATS_HEADER_CHR, AssociationConstants.STATS_HEADER_POSITION,
"df", "F", AssociationConstants.STATS_HEADER_P_VALUE,
"add_effect", "add_F", "add_p", "dom_effect", "dom_F", "dom_p", "errordf",
"MarkerR2", "Genetic Var", "Residual Var", "-2LnLikelihood"};
String[] headerAlleles = new String[]{"Trait", "Marker", "Locus", "Site", "Allele", "Effect", "Obs"};
String[] headerCompression = new String[]{"Trait", "# groups", "Compression", "-2LnLk", "Var_genetic", "Var_error"};
if (parentPlugin.isWriteOutputToFile()) {
String outputbase = parentPlugin.getOutputName();
String datasetNameNoSpace = datasetName.trim().replaceAll("\\ ", "_");
StringBuilder sb = new StringBuilder();
sb.append(outputbase).append("_").append(datasetNameNoSpace).append("_stats.txt");
siteReportBuilder = TableReportBuilder.getInstance("Marker Statistics - " + datasetName, headerMain, sb.toString());
sb = new StringBuilder();
sb.append(outputbase).append("_").append(datasetNameNoSpace).append("_effects.txt");
alleleReportBuilder = TableReportBuilder.getInstance("Allele Estimates - " + datasetName, headerAlleles, sb.toString());
sb = new StringBuilder();
sb.append(outputbase).append("_").append(datasetNameNoSpace).append("_compression.txt");
if (useCompression) compressionReportBuilder = TableReportBuilder.getInstance("Compression - " + datasetName, headerCompression, sb.toString());
else compressionReportBuilder = null;
} else {
siteReportBuilder = TableReportBuilder.getInstance("Marker Statistics - " + datasetName, headerMain);
alleleReportBuilder = TableReportBuilder.getInstance("Allele Estimates - " + datasetName, headerAlleles);
if (useCompression) compressionReportBuilder = TableReportBuilder.getInstance("Compression - " + datasetName, headerCompression);
else compressionReportBuilder = null;
}
// solve();
}
public CompressedMLMusingDoubleMatrix(WeightedMLMPlugin parentPlugin, Datum dataset, DistanceMatrix kinshipMatrix, Datum weights, boolean useCompression, boolean useP3D, double compression) {
this.parentPlugin = parentPlugin;
//this.parentPlugin = null;
this.kinshipMatrix = kinshipMatrix;
this.useCompression = useCompression;
this.useP3D = useP3D;
this.compression = compression;
this.myWeightMatrix = (Phenotype)weights.getData();
datasetName = dataset.getName();
if (dataset.getData().getClass().equals(GenotypePhenotype.class)) {
myGenoPheno = (GenotypePhenotype) dataset.getData();
myPhenotype = myGenoPheno.phenotype();
myGenotype = myGenoPheno.genotypeTable();
hasGenotype = true;
} else if (dataset.getData() instanceof Phenotype) {
myGenoPheno = null;
myPhenotype = (Phenotype) dataset.getData();
myGenotype = null;
hasGenotype = false;
} else {
myGenoPheno = null;
myPhenotype = null;
myGenotype = null;
hasGenotype = false;
}
// String[] headerMain = new String[]{"Trait", "Marker", "Locus", "Site", "df", "F", "p", "errordf", "markerR2", "Genetic Var", "Residual Var", "-2LnLikelihood"};
String[] headerMain = new String[]{AssociationConstants.STATS_HEADER_TRAIT, AssociationConstants.STATS_HEADER_MARKER,
AssociationConstants.STATS_HEADER_CHR, AssociationConstants.STATS_HEADER_POSITION,
"df", "F", AssociationConstants.STATS_HEADER_P_VALUE,
"add_effect", "add_F", "add_p", "dom_effect", "dom_F", "dom_p", "errordf",
"MarkerR2", "Genetic Var", "Residual Var", "-2LnLikelihood"};
String[] headerAlleles = new String[]{"Trait", "Marker", "Locus", "Site", "Allele", "Effect", "Obs"};
String[] headerCompression = new String[]{"Trait", "# groups", "Compression", "-2LnLk", "Var_genetic", "Var_error"};
if (parentPlugin.isWriteOutputToFile()) {
String outputbase = parentPlugin.getOutputName();
String datasetNameNoSpace = datasetName.trim().replaceAll("\\ ", "_");
StringBuilder sb = new StringBuilder();
sb.append(outputbase).append("_").append(datasetNameNoSpace).append("_stats.txt");
siteReportBuilder = TableReportBuilder.getInstance("Marker Statistics - " + datasetName, headerMain, sb.toString());
sb = new StringBuilder();
sb.append(outputbase).append("_").append(datasetNameNoSpace).append("_effects.txt");
alleleReportBuilder = TableReportBuilder.getInstance("Allele Estimates - " + datasetName, headerAlleles, sb.toString());
sb = new StringBuilder();
sb.append(outputbase).append("_").append(datasetNameNoSpace).append("_compression.txt");
if (useCompression) compressionReportBuilder = TableReportBuilder.getInstance("Compression - " + datasetName, headerCompression, sb.toString());
else compressionReportBuilder = null;
} else {
siteReportBuilder = TableReportBuilder.getInstance("Marker Statistics - " + datasetName, headerMain);
alleleReportBuilder = TableReportBuilder.getInstance("Allele Estimates - " + datasetName, headerAlleles);
if (useCompression) compressionReportBuilder = TableReportBuilder.getInstance("Compression - " + datasetName, headerCompression);
else compressionReportBuilder = null;
}
// solve();
}
public void useGenotypeCalls(boolean use) {
useGenotypeCalls = use;
}
public void useReferenceProbability(boolean use) {
useReferenceProbability = use;
}
public void useAlleleProbabilities(boolean use) {
useAlleleProbabilities = use;
}
public List solve() {
List results = new LinkedList();
int numberOfMarkers = 0;
if (hasGenotype) numberOfMarkers = myGenotype.numberOfSites();
List dataAttributeList = myPhenotype.attributeListOfType(ATTRIBUTE_TYPE.data);
factorAttributeList = myPhenotype.attributeListOfType(ATTRIBUTE_TYPE.factor);
covariateAttributeList = myPhenotype.attributeListOfType(ATTRIBUTE_TYPE.covariate);
TaxaAttribute myTaxaAttribute = myPhenotype.taxaAttribute();
int numberOfPhenotypes = dataAttributeList.size();
//calculate total iterations
int expectedIterations = numberOfPhenotypes * numberOfMarkers;
int iterationsSofar = 0;
//cycle through the phenotypes
for (PhenotypeAttribute attr : dataAttributeList) {
//get phenotype data
myLogger.debug("Running MLM for " + attr.name());
double[] phenotypeData = doubleDataFromAttribute(attr);
//get the taxa
Taxon[] theTaxa = myTaxaAttribute.allTaxa();
//keep track of missing rows
OpenBitSet missing = new OpenBitSet(attr.missing());
for (PhenotypeAttribute factorAttribute : factorAttributeList) missing.or(factorAttribute.missing());
for (PhenotypeAttribute covariateAttribute : covariateAttributeList) missing.or(covariateAttribute.missing());
//update missing for taxa not in the kinship matrix or the distance matrix.
//Create kinship and distance matrices with taxa in phenotype
TaxaList nonmissingIds = updateMissingWithKinship(missing, theTaxa);
DistanceMatrix kin = new DistanceMatrix(kinshipMatrix, nonmissingIds);
//calculate the number of nonmissing observations
int totalObs = attr.size();
int nonMissingObs = totalObs - (int) missing.cardinality();
//create phenotype matrix
double[] nonMissingData = AssociationUtils.getNonMissingDoubles(phenotypeData, missing);
Taxon[] nonMissingTaxa = AssociationUtils.getNonMissingValues(theTaxa, missing);
DoubleMatrix y = DoubleMatrixFactory.DEFAULT.make(nonMissingObs,1, nonMissingData);
//create the Z matrix
DoubleMatrix Z = DoubleMatrixFactory.DEFAULT.make(nonMissingObs, kin.numberOfTaxa());
for (int i = 0; i < nonMissingObs; i++) {
Z.set(i, kin.whichIdNumber(nonMissingTaxa[i]), 1);
}
//fixed effects matrix
DoubleMatrix fixed = AssociationUtils.createFixedEffectsArray(factorAttributeList, covariateAttributeList, missing, nonMissingObs);
DoubleMatrix W = null;
DoubleMatrix WOriginal = null;
EMMAforDoubleMatrix emlm = null;
DoubleMatrix[] zk = null;
//Check to see if weightedMLM is used
if(myWeightMatrix!=null) {
//Grab Attribute from myWeightMatrix which matches attr.name()
int weightAttrIndex = myWeightMatrix.attributeIndexForName(attr.name());
//Check to see if Attribute index = -1(missing)
if(weightAttrIndex!=-1) {
//Grab PhenotypeAttribute Object
PhenotypeAttribute weightAttribute = myWeightMatrix.attribute(weightAttrIndex);
//Remove Missing values from Weight List
double[] weightValues = doubleDataFromAttribute(weightAttribute);
double[] nonMissingWeights = AssociationUtils.getNonMissingDoubles(weightValues, missing);
//Check to make sure numRows(y) == numRows(weight)
if(nonMissingObs == nonMissingWeights.length) {
//Set Original Weight for use in Testing
WOriginal = DoubleMatrixFactory.DEFAULT.diagonal(nonMissingWeights);
//Calculate W = W^{-1/2}
for(int i = 0;i phenotypeTaxa = Arrays.asList(nonMissingTaxa);
Datum residuals = createResPhenotype(emlm, phenotypeTaxa, attr.name());
results.add(residuals);
if(parentPlugin.isWriteOutputToFile()){
ExportPlugin exporter = new ExportPlugin(null, false);
String outfile = parentPlugin.getOutputName() + "_" + residuals.getName() + "_residuals.txt";
exporter.setSaveFile(outfile);
exporter.performFunction(new DataSet(residuals, parentPlugin));
}
}
Object[] tableRow;
//{"Trait", "Marker", "Locus", "Site", "df", "F", "p", "errordf", "markerR2", "Genetic Var", "Residual Var", "-2LnLikelihood"}
//{"Trait","Marker","Chr","Pos","Locus","Site","df","F","p","add_effect","add_F","add_p","dom_effect","dom_F","dom_p","errordf","MarkerR2","Genetic Var","Residual Var", "-2LnLikelihood"}
tableRow = new Object[]{
attr.name(),
"None",
"",
"",
new Integer(0),
new Double(Double.NaN),
new Double(Double.NaN),
new Double(Double.NaN),
new Double(Double.NaN),
new Double(Double.NaN),
new Double(Double.NaN),
new Double(Double.NaN),
new Double(Double.NaN),
new Integer(nonMissingObs - baseModeldf),
new Double(Double.NaN),
new Double(genvar),
new Double(resvar),
new Double(-2 * lnlk)};
siteReportBuilder.add(tableRow);
//the BLUPs
//not implemented
if (useP3D) {
DoubleMatrix ZKZ = zk[0].mult(zk[1]).tcrossproduct(zk[0]);
//Check to see if W exists. Alter V calculation accordingly
if(W==null) {
Vminus = new SymmetricMatrixInverterDM(calculateV(ZKZ, genvar, resvar));
}
else {
Vminus = new SymmetricMatrixInverterDM(calculateV(ZKZ, WOriginal, genvar, resvar));
}
}
//iterate markers
if (testMarkers) {
for (int m = 0; m < numberOfMarkers; m++) {
OpenBitSet missingObsForSite = new OpenBitSet(missing);
missingObsForSite.or(missingForSite(m));
//only data for which missing=false are in the Z matrix
//the block below finds the rows of Z that have no marker data.
//Those rows/columns will need to be removed from ZKZ or from V, depending on the analysis method.
OpenBitSet missingFromZ = new OpenBitSet(nonMissingObs);
int nonMissingCount = 0;
for (int i = 0; i < totalObs; i++) {
if (!missing.fastGet(i)) {
if (missingObsForSite.fastGet(i)) {
missingFromZ.fastSet(nonMissingCount);
}
nonMissingCount++;
}
}
//adjust y for missing data
DoubleMatrix ymarker = AssociationUtils.getNonMissingValues(y, missingFromZ);
//adjust the fixed effects
DoubleMatrix fixed2 = AssociationUtils.getNonMissingValues(fixed, missingFromZ);
//add marker data to fixed effects
ArrayList markerIds = new ArrayList<>();
int nAlleles = 0;
int markerdf = 0;
DoubleMatrix X;
int[] alleleCounts = null;
if (useGenotypeCalls) {
byte[] genotypes = ModelEffectUtils.genotypesToUnphasedSorted(AssociationUtils.getNonMissingBytes(myGenoPheno.genotypeAllTaxa(m), missingObsForSite));
FactorModelEffect markerEffect = new FactorModelEffect(ModelEffectUtils.getIntegerLevels(genotypes, markerIds), true);
X = fixed2.concatenate(markerEffect.getX(), false);
nAlleles = markerEffect.getNumberOfLevels();
alleleCounts = markerEffect.getLevelCounts();
markerdf = nAlleles - 1;
} else if (useReferenceProbability) {
double[] genotypes = AssociationUtils.getNonMissingDoubles(myGenoPheno.referenceProb(m), missingObsForSite);
int nrows = genotypes.length;
X = fixed2.concatenate(DoubleMatrixFactory.DEFAULT.make(nrows, 1, genotypes), false);
nAlleles = 1;
alleleCounts = new int[]{nrows};
markerdf = 1;
} else {
X = null;
}
CompressedMLMResult result = new CompressedMLMResult();
//need to add marker information to result once Alignment is stable
if (useP3D) {
testMarkerUsingP3D(result, ymarker, X, Vminus.getInverse(missingFromZ, nonMissingObs), markerdf, markerIds);
} else {
DoubleMatrix Zsel = AssociationUtils.getNonMissingValues(zk[0], missingFromZ);
testMarkerUsingEMMA(result, ymarker, X, zk[1], Zsel, nAlleles, markerIds);
markerdf = result.modeldf - baseModeldf;
}
//if the results are to be filtered on pmax check for that condition
boolean recordTheseResults = true;
if (parentPlugin.isFilterOutput() && result.p > parentPlugin.getMaxp()) {
recordTheseResults = false;
}
if (recordTheseResults) {
//add result to main
//{"Trait","Marker","Chr","Pos","Locus","Site","df","F","p","errordf","MarkerR2","Genetic Var","Residual Var", "-2LnLikelihood"};
//results with additive and dominance effects
//{"Trait","Marker","Chr","Pos","Locus","Site","df","F","p","add_effect","add_F","add_p","dom_effect","dom_F","dom_p","errordf","MarkerR2","Genetic Var","Residual Var", "-2LnLikelihood"}
String markername = myGenotype.siteName(m);
String chr = "";
String pos = "";
String locus = myGenotype.chromosomeName(m);
String site = Integer.toString(myGenotype.chromosomalPosition(m));
double errordf = (double) (ymarker.numberOfRows() - result.modeldf);
tableRow = new Object[]{attr.name(),
markername,
locus,
site,
new Integer(markerdf),
new Double(result.F),
new Double(result.p),
new Double(result.addEffect),
new Double(result.Fadd),
new Double(result.padd),
new Double(result.domEffect),
new Double(result.Fdom),
new Double(result.pdom),
new Double(errordf),
new Double(result.r2),
new Double(genvar),
new Double(resvar),
new Double(-2 * lnlk)};
siteReportBuilder.add(tableRow);
//add result to alleles
//"Trait","Marker","Chr","Pos","Allele","Effect", obs
int numberOfRowsKept = totalObs - (int) missingObsForSite.cardinality();
if (useReferenceProbability) {
tableRow = new Object[]{attr.name(),
markername,
locus,
site,
"",
result.beta.get(result.beta.numberOfRows() - 1, 0),
numberOfRowsKept
};
//record the results
alleleReportBuilder.add(tableRow);
} else if (nAlleles > 1) {
for (int a = 0; a < nAlleles; a++) {
Double estimate;
if (a < nAlleles - 1) {
estimate = result.beta.get(result.beta.numberOfRows() - nAlleles + 1 + a, 0);
} else {
estimate = 0.0;
}
tableRow = new Object[]{attr.name(),
markername,
locus,
site,
// markerIds.get(a),
NucleotideAlignmentConstants.getNucleotideIUPAC(markerIds.get(a)),
estimate,
alleleCounts[a]
};
//record the results
alleleReportBuilder.add(tableRow);
}
}
}
iterationsSofar++;
int progress = (int) ((double) iterationsSofar / (double) expectedIterations * 100);
progress = Math.min(99, progress);
parentPlugin.updateProgress(progress);
}
}
}
parentPlugin.updateProgress(100);
results.addAll(formatResults());
return results;
}
// private BitSet missingForSiteX(int site) {
// int ntaxa = myGenotype.numberOfTaxa();
// OpenBitSet missing = new OpenBitSet(ntaxa);
// if (useGenotypeCalls) {
// byte[] siteGenotype = myGenotype.genotypeAllTaxa(site);
// byte missingByte = GenotypeTable.UNKNOWN_DIPLOID_ALLELE;
// for (int i = 0; i < ntaxa; i++) if (siteGenotype[i] == missingByte) missing.fastSet(i);
// } else if (useReferenceProbability) {
// for (int t = 0; t < ntaxa; t++) {
// if (myGenotype.referenceProbability(t, site) == Float.NaN) missing.fastSet(t);
// }
// } else {
// for (int t = 0; t < ntaxa; t++) {
// if (myGenotype.alleleProbability(t, site, SITE_SCORE_TYPE.DepthA) == Float.NaN) missing.fastSet(t);
// }
// }
// return missing;
// }
private BitSet missingForSite(int site) {
//returns BitSet with missing set for each observation with a missing genotype value
int nobs = myGenoPheno.phenotype().numberOfObservations();
OpenBitSet missing = new OpenBitSet(nobs);
if (useGenotypeCalls) {
byte[] siteGenotype = myGenoPheno.genotypeAllTaxa(site);
byte missingByte = GenotypeTable.UNKNOWN_DIPLOID_ALLELE;
for (int i = 0; i < nobs; i++) {
if (siteGenotype[i] == missingByte) missing.fastSet(i);
}
} else if (useReferenceProbability) {
float[] probs = myGenoPheno.referenceProb(site);
for (int t = 0; t < nobs; t++) {
if (probs[t] == Float.NaN) missing.fastSet(t);
}
} else {
float[] probs = myGenoPheno.alleleProbsOfType(SITE_SCORE_TYPE.DepthA, site);
for (int t = 0; t < nobs; t++) {
if (probs[t] == Float.NaN) missing.fastSet(t);
}
}
return missing;
}
private double[] doubleDataFromAttribute(PhenotypeAttribute attribute) {
float[] floatData = (float[]) ((NumericAttribute) attribute).allValues();
int n = floatData.length;
double[] doubleData = new double[n];
for (int i = 0; i < n; i++) doubleData[i] = floatData[i];
return doubleData;
}
private String getTabbedStringFromArray(Object[] array) {
StringBuffer sb = new StringBuffer();
sb.append(array[0]);
int n = array.length;
for (int i = 1; i < n; i++) {
sb.append("\t").append(array[i]);
}
return sb.toString();
}
public List formatResults() {
LinkedList output = new LinkedList();
//generate comments
StringBuilder options = new StringBuilder();
options.append("Use compression = ").append(useCompression).append("\n");
options.append("Use P3D = ").append(useP3D).append("\n");
if (useCompression) {
options.append(", compression level = ").append(compression).append("\n");
}
if (useP3D) {
options.append("P3D = ").append(useP3D).append(". Variance components were estimated only for the model without any markers.\n");
} else {
options.append("P3D = ").append(useP3D).append(". Variance components were estimated for each marker.\n");
}
StringBuilder model = new StringBuilder();
model.append("Model: trait = mean + ");
int nFactors = factorAttributeList.size();
for (PhenotypeAttribute factor:factorAttributeList) {
model.append(factor.name()).append(" + ");
}
int nCovar = covariateAttributeList.size();
for (PhenotypeAttribute cov : covariateAttributeList) {
model.append(cov.name()).append(" + ");
}
model.append("marker\n");
String reportName = "MLM_statistics_for_" + datasetName;
StringBuilder comment = new StringBuilder();
comment.append("MLM statistics for compressed MLM\n");
comment.append("Dataset: ").append(datasetName).append("\n");
comment.append(options).append(model);
TableReport myTableReport = siteReportBuilder.build();
if (myTableReport != null) output.add(new Datum(reportName, myTableReport, comment.toString()));
reportName = "MLM_effects_for_" + datasetName;
comment = new StringBuilder();
comment.append("MLM SNP effect estimates\n");
comment.append("Dataset: ").append(datasetName).append("\n");
comment.append(options).append(model);
myTableReport = alleleReportBuilder.build();
if (myTableReport != null) output.add(new Datum(reportName, myTableReport, comment.toString()));
if (useCompression) {
reportName = "MLM_compression_for_" + datasetName;
comment = new StringBuilder();
comment.append("MLM compression report\n");
comment.append("Dataset: ").append(datasetName).append("\n");
comment.append(options).append(model);
myTableReport = compressionReportBuilder.build();
if (myTableReport != null) output.add(new Datum(reportName, myTableReport, comment.toString())); }
return output;
}
/**
* Computes ZKZ. If compression is specified then the compressed ZKZ is calculated along with compressed versions of Z and K.
* @param data the phenotype data. Needed for optimizing compression.
* @param X the incidence matrix specifying all fixed effects other than markers
* @param Z the kinship incidence matrix
* @param kin the genetic similarity matrix
* @param traitname the name of the phenotype passed in data
* @return an array containing the Z matrix as its first element and the K matrix as its second element. If compression is specified, then both are the compressed versions.
*/
public DoubleMatrix[] computeZKZ(DoubleMatrix data, DoubleMatrix X, DoubleMatrix Z, DistanceMatrix kin, String traitname) {
myLogger.debug("Running compression for " + traitname);
DoubleMatrix[] zkMatrices = new DoubleMatrix[2];
CompressedDoubleMatrix.kinshipMethod kinmethod = CompressedDoubleMatrix.kinshipMethod.avg;
//Kmatrix
int nkin = kin.getSize();
int nrow = nkin;
int ncol = nrow;
DoubleMatrix K = DoubleMatrixFactory.DEFAULT.make(nrow, ncol);
for (int r = 0; r < nrow; r++) {
for (int c = 0; c < ncol; c++) {
K.set(r, c, kin.getDistance(r, c));
}
}
if (!useCompression) {
zkMatrices[0] = Z;
zkMatrices[1] = K;
} else if (Double.isNaN(compression)) {
//are taxa replicated?
//sum columns of Z. If any sum > 1, then yes
int n = Z.numberOfColumns();
int count = 0;
boolean taxaReplicated = false;
while (count < n && !taxaReplicated) {
if (Z.columnSum(count++) > 1.5) {
taxaReplicated = true;
}
}
DistanceMatrix distance = calculateDistanceFromKin(kin);
CompressedDoubleMatrix cm = new CompressedDoubleMatrix(kin, new UPGMATree(distance));
EMMAforDoubleMatrix emlm = new EMMAforDoubleMatrix(data, X, K, Z, 0, Double.NaN);
emlm.solve();
double bestlnlk = emlm.getLnLikelihood();
int bestCompression = nkin;
double exponent = 1;
double base = 0.98;
double maxexponent = Math.log(1 / ((double) nkin)) / Math.log(base);
parentPlugin.updateProgress((int) (exponent * 100 / maxexponent));
//int g = (int) (nkin * Math.pow(base, exponent));
int g = (int) (nkin);
while (g > 3) {
cm.setNumberOfGroups(g);
DoubleMatrix compressedZ = cm.getCompressedZ(Z);
DoubleMatrix compressedK = cm.getCompressedMatrix(kinmethod);
try {
emlm = new EMMAforDoubleMatrix(data, X, compressedK, compressedZ, 0, Double.NaN);
emlm.solve();
//output number of groups, compression level (= number of taxa / number of groups), -2L, genvar, resvar
compressionReportBuilder.add(new Object[]{traitname, g,
((double) nkin) / ((double) g),
-2 * emlm.getLnLikelihood(),
emlm.getVarRan(),
emlm.getVarRes()});
if (Double.isNaN(bestlnlk) || emlm.getLnLikelihood() > bestlnlk) {
bestlnlk = emlm.getLnLikelihood();
bestCompression = g;
resvar = emlm.getVarRes();
genvar = emlm.getVarRan();
}
} catch (Exception e) {
System.out.println("Compression failed for g = " + g);
}
int prev = g;
while (g == prev) {
exponent++;
int prog = (int) (exponent * 100 / maxexponent);
prog = Math.min(prog, 99);
parentPlugin.updateProgress(prog);
g = (int) (nkin * Math.pow(base, exponent));
}
}
//for g = 1 use GLM to estimate beta and errvar
// if (!taxaReplicated) {
// SweepFast sweep = new SweepFast(X, data);
// sweep.XTXSweepSetDmin();
// n = X.numberOfColumns();
// double ssres = sweep.getResidualSS();
// double errordf = (double) (data.numberOfRows() - n);
// double errvar = ssres / errordf;
// double lnlk = (errordf * Math.log(2 * Math.PI * errvar) + errordf);
//
// compressionReportBuilder.add(new Object[]{traitname, g,
// ((double) nkin) / ((double) g),
// lnlk,
// new Double(0.0),
// errvar});
//
// if (Double.isNaN(bestlnlk) || emlm.getLnLikelihood() > bestlnlk) {
// bestlnlk = emlm.getLnLikelihood();
// bestCompression = g;
// resvar = emlm.getVarRes();
// genvar = 0;
// }
//
// }
cm.setNumberOfGroups(bestCompression);
zkMatrices[0] = cm.getCompressedZ(Z);
zkMatrices[1] = cm.getCompressedMatrix(kinmethod);
parentPlugin.updateProgress(0);
} else {
DistanceMatrix distance = calculateDistanceFromKin(kin);
CompressedDoubleMatrix cm = new CompressedDoubleMatrix(kin, new UPGMATree(distance));
int g = (int) Math.round(nkin / compression);
cm.setNumberOfGroups(g);
zkMatrices[0] = cm.getCompressedZ(Z);
zkMatrices[1] = cm.getCompressedMatrix(kinmethod);
}
return zkMatrices;
}
public void testMarkerUsingEMMA(CompressedMLMResult result, DoubleMatrix y, DoubleMatrix X, DoubleMatrix K, DoubleMatrix Z, int nAlleles, ArrayList markerIds) {
EMMAforDoubleMatrix emlm = new EMMAforDoubleMatrix(y, X, K, Z, nAlleles, Double.NaN);
emlm.solve();
result.beta = emlm.getBeta();
double[] Fp = emlm.getMarkerFp();
result.F = Fp[0];
result.p = Fp[1];
result.modeldf = emlm.getDfModel();
genvar = emlm.getVarRan();
resvar = emlm.getVarRes();
lnlk = emlm.getLnLikelihood();
calculateRsquare(X, y, emlm.getInvH(), result, nAlleles - 1);
boolean markerTest = markerIds.size() == 3;
if (markerTest) {
markerTest = markerTest && !GenotypeTableUtils.isHeterozygous(markerIds.get(0));
markerTest = markerTest && !GenotypeTableUtils.isHeterozygous(markerIds.get(1));
markerTest = markerTest && GenotypeTableUtils.isHeterozygous(markerIds.get(2));
}
if (markerTest && Fp.length == 8) { //calculate additive and dominance tests and effects
//from EMMA, return new double[]{F,p,addEffect,Fadd,padd,domEffect,Fdom,pdom}
result.addEffect = Fp[2];
result.Fadd = Fp[3];
result.padd = Fp[4];
result.domEffect = Fp[5];
result.Fdom = Fp[6];
result.pdom = Fp[7];
}
}
public void testMarkerUsingP3D(CompressedMLMResult result, DoubleMatrix y, DoubleMatrix X, DoubleMatrix invV, int markerdf, ArrayList markerIds) {
//calculate beta
DoubleMatrix invXVX = X.crossproduct(invV).mult(X);
invXVX.invert();
result.beta = invXVX.mult(X.crossproduct(invV.mult(y)));
//test for markerdf = 0
if (markerdf == 0) {
result.F = Double.NaN;
result.p = Double.NaN;
result.r2 = 0.0;
} else { //full model
//calculate F test, p-value of F test
int nparm = result.beta.numberOfRows();
DoubleMatrix M = DoubleMatrixFactory.DEFAULT.make(markerdf, nparm, 0);
for (int i = 0; i < markerdf; i++) {
M.set(i, nparm - markerdf + i, 1);
}
DoubleMatrix Mb = M.mult(result.beta);
DoubleMatrix invMiM = M.mult(invXVX.tcrossproduct(M));
try {
invMiM.invert();
result.F = Mb.crossproduct(invMiM.mult(Mb)).get(0, 0) / markerdf;
} catch (Exception ex) {
result.F = Double.NaN;
}
try {
result.p = LinearModelUtils.Ftest(result.F, markerdf, y.numberOfRows() - nparm);
} catch (Exception e) {
result.p = Double.NaN;
}
calculateRsquare(X, y, invV, result, markerdf);
boolean markerTest = markerIds.size() == 3;
if (markerTest) {
markerTest = markerTest && !GenotypeTableUtils.isHeterozygous(markerIds.get(0));
markerTest = markerTest && !GenotypeTableUtils.isHeterozygous(markerIds.get(1));
markerTest = markerTest && GenotypeTableUtils.isHeterozygous(markerIds.get(2));
}
if (markerdf == 2 && markerTest) { //calculate additive and dominance tests and effects
//additive test
M = DoubleMatrixFactory.DEFAULT.make(1, nparm, 0);
M.set(0, nparm - 2, 0.5);
M.set(0, nparm - 1, -0.5);
Mb = M.mult(result.beta);
result.addEffect = Mb.get(0, 0);
try {
result.Fadd = Mb.get(0, 0) * Mb.get(0,0) / (M.mult(invXVX.tcrossproduct(M))).get(0,0);
} catch (Exception ex) {
result.Fadd = Double.NaN;
}
try {
result.padd = LinearModelUtils.Ftest(result.Fadd, 1, y.numberOfRows() - nparm);
} catch (Exception e) {
result.padd = Double.NaN;
}
//dominance test
M = DoubleMatrixFactory.DEFAULT.make(1, nparm, 0);
M.set(0, nparm - 2, -0.5);
M.set(0, nparm - 1, -0.5);
Mb = M.mult(result.beta);
result.domEffect = Mb.get(0, 0);
try {
result.Fdom = Mb.get(0, 0) * Mb.get(0,0) / (M.mult(invXVX.tcrossproduct(M))).get(0,0);
} catch (Exception ex) {
result.Fdom = Double.NaN;
}
try {
result.pdom = LinearModelUtils.Ftest(result.Fdom, 1, y.numberOfRows() - nparm);
} catch (Exception e) {
result.pdom = Double.NaN;
}
}
}
}
private void calculateRsquare(DoubleMatrix X, DoubleMatrix y, DoubleMatrix invV, CompressedMLMResult result, int markerdf) {
//calculate R2
//from Buse(1973) Am. Stat. 27:106-108.
//R^2 = ymarker'*inverseV*ymarker / (y-mean)'*inverseV*(y-mean)
//where ymarker = yhat(full model) - yhat(model without marker)
//as Xm*betam where Xm is the columns of X due to the marker and betam is the portion of beta due to the markers adjusted for the marker mean
int dimX = X.numberOfColumns();
int dimXreduced = dimX - markerdf;
int[] colsToKeep = new int[dimXreduced];
for (int i = 0; i < dimXreduced; i++) {
colsToKeep[i] = i;
}
DoubleMatrix Xreduced = X.getSelection(null, colsToKeep);
//calculate reduced beta
DoubleMatrix invXVX = Xreduced.crossproduct(invV).mult(Xreduced);
invXVX.invert();
DoubleMatrix betaReduced = invXVX.mult(Xreduced.crossproduct(invV.mult(y)));
//calculate yhat = yhatFull - yhatReduced
DoubleMatrix yhat = X.mult(result.beta);
DoubleMatrix yhatReduced = Xreduced.mult(betaReduced);
yhat.minusEquals(yhatReduced);
//calculate ydev = y - mean
double sum = 0;
int n = y.numberOfRows();
for (int i = 0; i < n; i++) {
sum += y.get(i, 0);
}
double mean = sum / n;
DoubleMatrix ydev = y.scalarAdd(-mean);
double numerator = yhat.crossproduct(invV).mult(yhat).get(0, 0);
double denominator = ydev.crossproduct(invV).mult(ydev).get(0, 0);
result.r2 = numerator / denominator;
}
public DoubleMatrix calculateV(DoubleMatrix ZKZ, double genvar, double resvar) {
DoubleMatrix V = ZKZ.scalarMult(genvar);
int n = V.numberOfRows();
for (int i = 0; i < n; i++) {
V.set(i, i, V.get(i, i) + resvar);
}
return V;
}
public DoubleMatrix calculateV(DoubleMatrix ZKZ, DoubleMatrix W ,double genvar, double resvar) {
DoubleMatrix V = ZKZ.scalarMult(genvar);
int n = V.numberOfRows();
for(int i = 0; i < n; i++) {
V.set(i, i, V.get(i, i)+W.get(i,i) * resvar);
}
return V;
}
public DistanceMatrix calculateDistanceFromKin(DistanceMatrix kin) {
int n = kin.getSize();
double max = kin.getDistance(0, 0);
for (int i = 0; i < n; i++) {
max = Math.max(max, kin.getDistance(i, i));
}
double constant;
if (max > 2) {
constant = max;
} else if (max > 1) {
constant = 2;
} else {
constant = 1;
}
DistanceMatrixBuilder builder = DistanceMatrixBuilder.getInstance(kin.getTaxaList());
for (int r = 0; r < n; r++) {
builder.set(r, r, constant - kin.getDistance(r, r));
for (int c = r + 1; c < n; c++) {
double newval = constant - kin.getDistance(r, c);
builder.set(r, c, newval);
}
}
return builder.build();
}
/**
* @param missing a BitSet with bits equal set when a value is missing in that row
* @param phenotypeTaxa the taxa
* @return a TaxaList with the taxa that are in both the kinship matrix and the phenotype.
* Sets indices of taxa in missing that are not in the kinship matrix.
*/
public TaxaList updateMissingWithKinship(BitSet missing, Taxon[] phenotypeTaxa) {
int n = phenotypeTaxa.length;
for (int i = 0; i < n; i++) {
int ndx = kinshipMatrix.whichIdNumber(phenotypeTaxa[i]);
if (ndx < 0) missing.fastSet(i);
}
Taxon[] nonMissingTaxa = AssociationUtils.getNonMissingValues(phenotypeTaxa, missing);
Set taxaSet = Arrays.stream(nonMissingTaxa).collect(Collectors.toCollection(HashSet::new));
return new TaxaListBuilder().addAll(taxaSet).build();
}
public Datum createResPhenotype(EMMAforDoubleMatrix emma, List taxa, String traitName) {
emma.calculateBlupsPredictedResiduals();
DoubleMatrix res = emma.getRes();
int nres = res.numberOfRows();
float[] resarray = new float[nres];
for (int i = 0; i < nres; i++) resarray[i] = (float) res.get(i,0);
List attrList = new ArrayList();
List typeList = new ArrayList();
attrList.add(new TaxaAttribute(taxa));
typeList.add(ATTRIBUTE_TYPE.taxa);
attrList.add(new NumericAttribute(traitName, resarray, new OpenBitSet(nres)));
typeList.add(ATTRIBUTE_TYPE.data);
Phenotype residualPheno = new PhenotypeBuilder().fromAttributeList(attrList, typeList).build().get(0);
String name = String.format("Residuals for %s.", traitName);
String comment = String.format("Residuals for %s calculated by MLM, no markers fit\nDataset: %s\n", traitName, datasetName);
Datum output = new Datum(name, residualPheno, comment);
return output;
}
class CompressedMLMResult {
DoubleMatrix beta = null;
double F = Double.NaN;
double p = Double.NaN;
double Fadd = Double.NaN;
double padd = Double.NaN;
double Fdom = Double.NaN;
double pdom = Double.NaN;
double r2 = Double.NaN;
double addEffect = Double.NaN;
double domEffect = Double.NaN;
int modeldf;
int markerdf;
int ngroups;
}
public void setTestMarkers(boolean testMarkers) {
this.testMarkers = testMarkers;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy