All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.maizegenetics.analysis.distance.EndelmanDistanceMatrix Maven / Gradle / Ivy

Go to download

TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage disequilibrium.

There is a newer version: 5.2.94
Show newest version
/*
 *  EndelmanDistanceMatrix
 * 
 *  Created on June 30, 2015
 */
package net.maizegenetics.analysis.distance;

import java.util.Arrays;
import java.util.Optional;
import java.util.Spliterator;
import static java.util.Spliterator.IMMUTABLE;
import java.util.function.Consumer;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
import net.maizegenetics.dna.snp.GenotypeTable;
import net.maizegenetics.dna.snp.genotypecall.AlleleFreqCache;
import net.maizegenetics.prefs.TasselPrefs;
import net.maizegenetics.taxa.TaxaList;
import net.maizegenetics.taxa.distance.DistanceMatrix;
import net.maizegenetics.taxa.distance.DistanceMatrixBuilder;
import net.maizegenetics.util.GeneralAnnotationStorage;
import net.maizegenetics.util.ProgressListener;
import net.maizegenetics.util.Tuple;
import org.apache.log4j.Logger;

/**
 *
 * @author Terry Casstevens
 */
public class EndelmanDistanceMatrix {

    private static final Logger myLogger = Logger.getLogger(EndelmanDistanceMatrix.class);

    private static final int DEFAULT_MAX_ALLELES = 6;

    /**
     * Compute Endelman kinship for all pairs of taxa. Missing sites are
     * ignored. http://www.g3journal.org/content/2/11/1405.full.pdf Equation-13
     *
     * @param genotype Genotype Table used to compute kinship
     *
     * @return Endelman Kinship Matrix
     */
    private EndelmanDistanceMatrix() {
        // utility
    }

    /**
     * Compute Endelman Kinship Matrix. Maximum alleles per site to evaluate
     * defaults to 2.
     *
     * @param genotype Genotype Table used to compute kinship
     *
     * @return Endelman Kinship Matrix
     */
    public static DistanceMatrix getInstance(GenotypeTable genotype) {
        return getInstance(genotype, DEFAULT_MAX_ALLELES, null);
    }

    /**
     * Compute Endelman Kinship Matrix
     *
     * @param genotype Genotype Table used to compute kinship
     * @param maxAlleles maximum alleles per site to evaluate. i.e. Set to 3 to
     * evaluate the three most frequent allele states.
     *
     * @return Endelman Kinship Matrix
     */
    public static DistanceMatrix getInstance(GenotypeTable genotype, int maxAlleles) {
        return getInstance(genotype, maxAlleles, null);
    }

    /**
     * Compute Endelman Kinship Matrix. Maximum alleles per site to evaluate
     * defaults to 2.
     *
     * @param genotype Genotype Table used to compute kinship
     * @param listener Progress listener
     *
     * @return Endelman Kinship Matrix
     */
    public static DistanceMatrix getInstance(GenotypeTable genotype, ProgressListener listener) {
        return computeEndelmanDistances(genotype, DEFAULT_MAX_ALLELES, listener);
    }

    /**
     * Compute Endelman Kinship Matrix
     *
     * @param genotype Genotype Table used to compute kinship
     * @param maxAlleles maximum alleles per site to evaluate. i.e. Set to 3 to
     * evaluate the three most frequent allele states.
     * @param listener Progress listener
     *
     * @return Endelman Kinship Matrix
     */
    public static DistanceMatrix getInstance(GenotypeTable genotype, int maxAlleles, ProgressListener listener) {
        return computeEndelmanDistances(genotype, maxAlleles, listener);
    }

    private static DistanceMatrix computeEndelmanDistances(GenotypeTable genotype, int maxAlleles, ProgressListener listener) {

        if ((maxAlleles < 2) || (maxAlleles > 6)) {
            throw new IllegalArgumentException("EndelmanDistanceMatrix: computeEndelmanDistances: max alleles must be between 2 and 6 inclusive.");
        }

        int numSeqs = genotype.numberOfTaxa();

        long estimatedNumMinutesToRun = Math.round((double) numSeqs * ((double) numSeqs + 1.0) / 2.0 * (double) genotype.numberOfSites() / (double) NUM_CORES_TO_USE / 85000000000.0);
        if (estimatedNumMinutesToRun < 60l) {
            myLogger.info("EndelmanDistanceMatrix: estimated time: " + estimatedNumMinutesToRun + " minutes");
        } else {
            myLogger.info("EndelmanDistanceMatrix: estimated time: " + (estimatedNumMinutesToRun / 60) + " hours " + (estimatedNumMinutesToRun % 60) + " minutes");
        }

        long time = System.currentTimeMillis();

        //
        // Sets up parellel stream to divide up sites for processing.
        // Also reduces the distance sums and sum of frequencies into one instance.
        //
        Optional optional = stream(genotype, maxAlleles, listener).reduce((CountersDistances t, CountersDistances u) -> {
            t.addAll(u);
            return t;
        });

        if (!optional.isPresent()) {
            return null;
        }
        CountersDistances counters = optional.get();
        double sumpk = counters.mySumPi;
        float[] distances = counters.myDistances;

        //
        // This does the final division of the frequency sum into
        // the distance sums.
        //
        sumpk *= 2.0;

        GeneralAnnotationStorage.Builder annotations = GeneralAnnotationStorage.getBuilder();
        annotations.addAnnotation(DistanceMatrixBuilder.MATRIX_TYPE, KinshipPlugin.KINSHIP_METHOD.Centered_IBS.toString());
        annotations.addAnnotation(DistanceMatrixBuilder.CENTERED_IBS_SUMPK, sumpk);

        DistanceMatrixBuilder builder = DistanceMatrixBuilder.getInstance(genotype.taxa());
        builder.annotation(annotations.build());
        int index = 0;
        for (int t = 0; t < numSeqs; t++) {
            for (int i = 0, n = numSeqs - t; i < n; i++) {
                builder.set(t, t + i, distances[index] / sumpk);
                index++;
            }
        }

        long actualNumMinutesToRun = Math.round((System.currentTimeMillis() - time) / 60000l);
        if (actualNumMinutesToRun < 60l) {
            myLogger.info("EndelmanDistanceMatrix: actual time: " + actualNumMinutesToRun + " minutes");
        } else {
            myLogger.info("EndelmanDistanceMatrix: actual time: " + (actualNumMinutesToRun / 60) + " hours " + (actualNumMinutesToRun % 60) + " minutes");
        }

        return builder.build();

    }

    public static DistanceMatrix subtractEndelmanDistance(DistanceMatrix[] matrices, DistanceMatrix superMatrix, ProgressListener listener) {

        int numTaxa = superMatrix.numberOfTaxa();
        String matrixType = superMatrix.annotations().getTextAnnotation(DistanceMatrixBuilder.MATRIX_TYPE)[0];
        if (!matrixType.equals(KinshipPlugin.KINSHIP_METHOD.Centered_IBS.toString())) {
            throw new IllegalArgumentException("subtractEndelmanDistance: superset matrix must be matrix type: " + KinshipPlugin.KINSHIP_METHOD.Centered_IBS.toString());
        }
        for (DistanceMatrix current : matrices) {
            int currentNumTaxa = current.numberOfTaxa();
            if (currentNumTaxa != numTaxa) {
                throw new IllegalArgumentException("subtractEndelmanDistance: subset and superset must have same number of taxa.");
            }
            String[] currentMatrixType = current.annotations().getTextAnnotation(DistanceMatrixBuilder.MATRIX_TYPE);
            if (currentMatrixType.length == 0) {
                throw new IllegalArgumentException("subtractEndelmanDistance: subset matrix must be created with a more recent build of Tassel that adds neccessary annotations to the matrix");
            }
            if (!matrixType.equals(currentMatrixType[0])) {
                throw new IllegalArgumentException("subtractEndelmanDistance: subset matrix must be matrix type: " + KinshipPlugin.KINSHIP_METHOD.Centered_IBS.toString());
            }
        }

        TaxaList superTaxaList = superMatrix.getTaxaList();
        for (DistanceMatrix current : matrices) {
            TaxaList subsetTaxaList = current.getTaxaList();
            for (int t = 0; t < numTaxa; t++) {
                if (!superTaxaList.get(t).equals(subsetTaxaList.get(t))) {
                    throw new IllegalArgumentException("subtractEndelmanDistance: superset taxon: " + superTaxaList.get(t).getName() + " doesn't match subset taxon: " + subsetTaxaList.taxaName(t));
                }
            }
        }

        DistanceMatrixBuilder builder = DistanceMatrixBuilder.getInstance(superTaxaList);

        //
        // This does the final division of the frequency sum into
        // the distance sums.
        //
        int numMatrices = matrices.length;
        double superSumpk = superMatrix.annotations().getQuantAnnotation(DistanceMatrixBuilder.CENTERED_IBS_SUMPK)[0];
        double resultSumpk = superSumpk;
        double[] matricesSumpk = new double[numMatrices];
        for (int i = 0; i < numMatrices; i++) {
            matricesSumpk[i] = matrices[i].annotations().getQuantAnnotation(DistanceMatrixBuilder.CENTERED_IBS_SUMPK)[0];
            resultSumpk -= matricesSumpk[i];
        }

        GeneralAnnotationStorage.Builder resultAnnotations = GeneralAnnotationStorage.getBuilder();
        resultAnnotations.addAnnotation(DistanceMatrixBuilder.MATRIX_TYPE, KinshipPlugin.KINSHIP_METHOD.Centered_IBS.toString());
        resultAnnotations.addAnnotation(DistanceMatrixBuilder.CENTERED_IBS_SUMPK, resultSumpk);
        builder.annotation(resultAnnotations.build());

        for (int t = 0; t < numTaxa; t++) {
            for (int i = 0, n = numTaxa - t; i < n; i++) {
                double resultValue = superMatrix.getDistance(t, t + i) * superSumpk;
                for (int j = 0; j < numMatrices; j++) {
                    resultValue -= (matrices[j].getDistance(t, t + i) * matricesSumpk[j]);
                }
                builder.set(t, t + i, resultValue / resultSumpk);
            }
        }

        return builder.build();

    }

    public static DistanceMatrix addEndelmanDistance(DistanceMatrix[] matrices, ProgressListener listener) {

        int numTaxa = matrices[0].numberOfTaxa();
        String matrixType = matrices[0].annotations().getTextAnnotation(DistanceMatrixBuilder.MATRIX_TYPE)[0];
        if (!matrixType.equals(KinshipPlugin.KINSHIP_METHOD.Centered_IBS.toString())) {
            throw new IllegalArgumentException("addEndelmanDistance: superset matrix must be matrix type: " + KinshipPlugin.KINSHIP_METHOD.Centered_IBS.toString());
        }
        for (int i = 1; i < matrices.length; i++) {
            DistanceMatrix current = matrices[i];
            int currentNumTaxa = current.numberOfTaxa();
            if (currentNumTaxa != numTaxa) {
                throw new IllegalArgumentException("addEndelmanDistance: all matrices must have same number of taxa.");
            }
            String[] currentMatrixType = current.annotations().getTextAnnotation(DistanceMatrixBuilder.MATRIX_TYPE);
            if (currentMatrixType.length == 0) {
                throw new IllegalArgumentException("addEndelmanDistance: matrix must be created with a more recent build of Tassel that adds neccessary annotations to the matrix");
            }
            if (!matrixType.equals(currentMatrixType[0])) {
                throw new IllegalArgumentException("addEndelmanDistance: matrix must be matrix type: " + KinshipPlugin.KINSHIP_METHOD.Centered_IBS.toString());
            }
        }

        TaxaList superTaxaList = matrices[0].getTaxaList();
        for (int i = 1; i < matrices.length; i++) {
            DistanceMatrix current = matrices[i];
            TaxaList subsetTaxaList = current.getTaxaList();
            for (int t = 0; t < numTaxa; t++) {
                if (!superTaxaList.get(t).equals(subsetTaxaList.get(t))) {
                    throw new IllegalArgumentException("addEndelmanDistance: superset taxon: " + superTaxaList.get(t).getName() + " doesn't match subset taxon: " + subsetTaxaList.taxaName(t));
                }
            }
        }

        DistanceMatrixBuilder builder = DistanceMatrixBuilder.getInstance(superTaxaList);

        //
        // This does the final division of the frequency sum into
        // the distance sums.
        //
        int numMatrices = matrices.length;
        double resultSumpk = 0.0;
        double[] matricesSumpk = new double[numMatrices];
        for (int i = 0; i < numMatrices; i++) {
            matricesSumpk[i] = matrices[i].annotations().getQuantAnnotation(DistanceMatrixBuilder.CENTERED_IBS_SUMPK)[0];
            resultSumpk += matricesSumpk[i];
        }

        GeneralAnnotationStorage.Builder resultAnnotations = GeneralAnnotationStorage.getBuilder();
        resultAnnotations.addAnnotation(DistanceMatrixBuilder.MATRIX_TYPE, KinshipPlugin.KINSHIP_METHOD.Centered_IBS.toString());
        resultAnnotations.addAnnotation(DistanceMatrixBuilder.CENTERED_IBS_SUMPK, resultSumpk);
        builder.annotation(resultAnnotations.build());

        for (int t = 0; t < numTaxa; t++) {
            for (int i = 0, n = numTaxa - t; i < n; i++) {
                double resultValue = 0.0;
                for (int j = 0; j < numMatrices; j++) {
                    resultValue += (matrices[j].getDistance(t, t + i) * matricesSumpk[j]);
                }
                builder.set(t, t + i, resultValue / resultSumpk);
            }
        }

        return builder.build();

    }

    protected static void fireProgress(int percent, ProgressListener listener) {
        if (listener != null) {
            if (percent > 100) {
                percent = 100;
            }
            listener.progress(percent, null);
        }
    }

    //
    // Each CPU thread (process) creates an instance of this class
    // to acculate terms of the Endelman equation. These are
    // combined with addAll() to result in one instance at the end.
    //
    private static class CountersDistances {

        private double mySumPi = 0.0;
        private final float[] myDistances;
        private final int myNumTaxa;

        public CountersDistances(int numTaxa) {
            myNumTaxa = numTaxa;
            myDistances = new float[myNumTaxa * (myNumTaxa + 1) / 2];
        }

        public void addAll(CountersDistances counters) {
            float[] otherDistances = counters.myDistances;
            for (int t = 0, n = myDistances.length; t < n; t++) {
                myDistances[t] += otherDistances[t];
            }
            mySumPi += counters.mySumPi;
        }

    }

    //
    // This pre-calculates the number of occurances of the allele
    // for all possible diploid allele values.  Numbers 0 through 7
    // represent A, C, G, T, -, +, N respectively.  First three bits
    // codes the allele.  Remaining six bits codes the diploid
    // allele values. The stored counts are encodings.  Value 7 (bits 111) means
    // it's not a comparable combination because either major allele
    // is unknown or the diploid allele value is unknown.
    // Code 1 (bits 001) is zero count.
    // Code 2 (bits 010) is one count.
    // Code 4 (bits 100) is two count.
    //
    private static final byte[] PRECALCULATED_COUNTS = new byte[512];

    static {
        for (int allele = 0; allele < 8; allele++) {
            for (int a = 0; a < 8; a++) {
                for (int b = 0; b < 8; b++) {
                    int temp = (allele << 6) | (a << 3) | b;
                    if ((allele == 7) || ((a == 7) && (b == 7))) {
                        PRECALCULATED_COUNTS[temp] = 7;
                    } else if (a == allele) {
                        if (b == allele) {
                            PRECALCULATED_COUNTS[temp] = 4;
                        } else {
                            PRECALCULATED_COUNTS[temp] = 2;
                        }
                    } else if (b == allele) {
                        PRECALCULATED_COUNTS[temp] = 2;
                    } else {
                        PRECALCULATED_COUNTS[temp] = 1;
                    }
                }
            }
        }
    }

    private static final int NUM_CORES_TO_USE = TasselPrefs.getMaxThreads();

    //
    // Used to report progress.  This is not thread-safe but
    // works well enough for this purpose.
    //
    private static int myNumSitesProcessed = 0;

    //
    // Creates stream from EndelmanSiteSpliterator and Genotype Table
    //
    private static Stream stream(GenotypeTable genotypes, int maxAlleles, ProgressListener listener) {
        myNumSitesProcessed = 0;
        return StreamSupport.stream(new EndelmanSiteSpliterator(genotypes, 0, genotypes.numberOfSites(), maxAlleles, listener), true);
    }

    //
    // Spliterator that splits the sites into halves each time for
    // processing.
    //
    static class EndelmanSiteSpliterator implements Spliterator {

        private int myCurrentSite;
        private final int myFence;
        private final GenotypeTable myGenotypes;
        private final int myNumTaxa;
        private final int myNumSites;
        private final int myMaxAlleles;
        private final ProgressListener myProgressListener;
        private final int myMinSitesToProcess;
        private final int myNumSitesPerBlockForProgressReporting;

        EndelmanSiteSpliterator(GenotypeTable genotypes, int currentIndex, int fence, int maxAlleles, ProgressListener listener) {
            myGenotypes = genotypes;
            myNumTaxa = myGenotypes.numberOfTaxa();
            myNumSites = myGenotypes.numberOfSites();
            myCurrentSite = currentIndex;
            myFence = fence;
            myMaxAlleles = maxAlleles;
            myProgressListener = listener;
            myMinSitesToProcess = Math.max(myNumSites / NUM_CORES_TO_USE, 1000);
            myNumSitesPerBlockForProgressReporting = Math.max((myFence - myCurrentSite) / 10, 100);
        }

        @Override
        public void forEachRemaining(Consumer action) {

            CountersDistances result = new CountersDistances(myNumTaxa);
            float[] distances = result.myDistances;
            double[] sumpi = new double[1];

            float[] answer1 = new float[32768];
            float[] answer2 = new float[32768];
            float[] answer3 = new float[32768];

            for (; myCurrentSite < myFence;) {

                int currentBlockFence = Math.min(myCurrentSite + myNumSitesPerBlockForProgressReporting, myFence);

                int numSitesProcessed = currentBlockFence - myCurrentSite;

                for (; myCurrentSite < currentBlockFence;) {

                    //
                    // This keeps track of number of sites processed.  The blocks
                    // of sites may contain entries for minor allele, 2nd minor
                    // allele, etc.
                    //
                    int[] realSites = new int[1];

                    //
                    // Pre-calculates possible terms and gets counts for
                    // three blocks for five (pseudo-)sites.
                    //
                    Tuple firstBlock = getBlockOfSites(myCurrentSite, sumpi, realSites);
                    float[] possibleTerms = firstBlock.y;
                    short[] alleleCount1 = firstBlock.x;

                    Tuple secondBlock = getBlockOfSites(myCurrentSite + realSites[0], sumpi, realSites);
                    float[] possibleTerms2 = secondBlock.y;
                    short[] alleleCount2 = secondBlock.x;

                    Tuple thirdBlock = getBlockOfSites(myCurrentSite + realSites[0], sumpi, realSites);
                    float[] possibleTerms3 = thirdBlock.y;
                    short[] alleleCount3 = thirdBlock.x;

                    myCurrentSite += realSites[0];

                    //
                    // Using possible terms, calculates all possible answers
                    // for each site block.
                    //
                    for (int i = 0; i < 32768; i++) {
                        answer1[i] = possibleTerms[(i & 0x7000) >>> 12] + possibleTerms[((i & 0xE00) >>> 9) | 0x8] + possibleTerms[((i & 0x1C0) >>> 6) | 0x10] + possibleTerms[((i & 0x38) >>> 3) | 0x18] + possibleTerms[(i & 0x7) | 0x20];
                        answer2[i] = possibleTerms2[(i & 0x7000) >>> 12] + possibleTerms2[((i & 0xE00) >>> 9) | 0x8] + possibleTerms2[((i & 0x1C0) >>> 6) | 0x10] + possibleTerms2[((i & 0x38) >>> 3) | 0x18] + possibleTerms2[(i & 0x7) | 0x20];
                        answer3[i] = possibleTerms3[(i & 0x7000) >>> 12] + possibleTerms3[((i & 0xE00) >>> 9) | 0x8] + possibleTerms3[((i & 0x1C0) >>> 6) | 0x10] + possibleTerms3[((i & 0x38) >>> 3) | 0x18] + possibleTerms3[(i & 0x7) | 0x20];
                    }

                    //
                    // Iterates through all pair-wise combinations of taxa adding
                    // distance comparisons and site counts.
                    //
                    int index = 0;
                    for (int firstTaxa = 0; firstTaxa < myNumTaxa; firstTaxa++) {
                        //
                        // Can skip inter-loop if all fifteen sites for first
                        // taxon is Unknown diploid allele values
                        //
                        if ((alleleCount1[firstTaxa] != 0x7FFF) || (alleleCount2[firstTaxa] != 0x7FFF) || (alleleCount3[firstTaxa] != 0x7FFF)) {
                            for (int secondTaxa = firstTaxa; secondTaxa < myNumTaxa; secondTaxa++) {
                                //
                                // Combine first taxon's allele counts with
                                // second taxon's major allele counts to
                                // create index into pre-calculated answers
                                //
                                distances[index] += answer1[alleleCount1[firstTaxa] | alleleCount1[secondTaxa]] + answer2[alleleCount2[firstTaxa] | alleleCount2[secondTaxa]] + answer3[alleleCount3[firstTaxa] | alleleCount3[secondTaxa]];
                                index++;
                            }
                        } else {
                            index += myNumTaxa - firstTaxa;
                        }
                    }
                }

                myNumSitesProcessed += numSitesProcessed;
                fireProgress((int) ((double) myNumSitesProcessed / (double) myNumSites * 100.0), myProgressListener);

            }

            result.mySumPi = sumpi[0];
            action.accept(result);

        }

        private static final int NUM_SITES_PER_BLOCK = 5;

        private Tuple getBlockOfSites(int currentSite, double[] sumpi, int[] realSites) {

            int currentSiteNum = 0;

            //
            // This hold possible terms for the Endelman summation given
            // site's allele frequency.  First three bits
            // identifies relative site (0, 1, 2, 3, 4).  Remaining three bits
            // the allele counts encoding.
            //
            float[] possibleTerms = new float[40];

            //
            // This holds count of allele for each taxa.
            // Each short holds count (0, 1, 2, 3) for all four sites
            // at given taxon.  The count encodings are stored in three
            // bits each.
            //
            short[] alleleCount = new short[myNumTaxa];

            //
            // This initializes the counts to 0x7FFF.  That means
            // diploid allele values for the four sites are Unknown.
            //
            Arrays.fill(alleleCount, (short) 0x7FFF);

            while ((currentSiteNum < NUM_SITES_PER_BLOCK) && (currentSite < myFence)) {

                byte[] genotypes = myGenotypes.genotypeAllTaxa(currentSite);
                int[][] alleles = AlleleFreqCache.allelesSortedByFrequencyNucleotide(genotypes);
                int numAlleles = Math.min(alleles[0].length - 1, myMaxAlleles - 1);

                if (numAlleles + currentSiteNum <= NUM_SITES_PER_BLOCK) {

                    //
                    // Calculates total number of haploid alleles that
                    // are not missing.
                    //
                    int totalAlleleCount = 0;
                    for (int i = 0; i < alleles[1].length; i++) {
                        totalAlleleCount += alleles[1][i];
                    }

                    for (int a = 0; a < numAlleles; a++) {

                        byte allele = (byte) alleles[0][a];
                        float alleleFreq = (float) alleles[1][a] / (float) totalAlleleCount;
                        float alleleFreqTimes2 = alleleFreq * 2.0f;
                        sumpi[0] += alleleFreq * (1.0 - alleleFreq);

                        //
                        // Temporarily stores component terms of equation for
                        // individual allele counts (0, 1, 2)
                        //
                        float[] term = new float[3];

                        //
                        // If allele is Unknown, the entire
                        // site is skipped.
                        //
                        if (allele != GenotypeTable.UNKNOWN_ALLELE) {

                            term[0] = 0.0f - alleleFreqTimes2;
                            term[1] = 1.0f - alleleFreqTimes2;
                            term[2] = 2.0f - alleleFreqTimes2;

                            //
                            // Pre-calculates all possible terms of the summation
                            // for this current (pseudo-) site.
                            // Counts (0,0; 0,1; 0,2; 1,1; 1,2; 2,2)
                            //
                            int siteNumIncrement = currentSiteNum * 8;
                            possibleTerms[siteNumIncrement + 1] = term[0] * term[0];
                            possibleTerms[siteNumIncrement + 3] = term[0] * term[1];
                            possibleTerms[siteNumIncrement + 5] = term[0] * term[2];
                            possibleTerms[siteNumIncrement + 2] = term[1] * term[1];
                            possibleTerms[siteNumIncrement + 6] = term[1] * term[2];
                            possibleTerms[siteNumIncrement + 4] = term[2] * term[2];

                            //
                            // Records allele counts for current site in
                            // three bits.
                            //
                            int temp = (allele & 0x7) << 6;
                            int shift = (NUM_SITES_PER_BLOCK - currentSiteNum - 1) * 3;
                            int mask = ~(0x7 << shift) & 0x7FFF;
                            for (int i = 0; i < myNumTaxa; i++) {
                                alleleCount[i] = (short) (alleleCount[i] & (mask | PRECALCULATED_COUNTS[temp | ((genotypes[i] & 0x70) >>> 1) | (genotypes[i] & 0x7)] << shift));
                            }
                        }

                        currentSiteNum++;
                    }
                } else {
                    return new Tuple<>(alleleCount, possibleTerms);
                }

                currentSite++;
                realSites[0]++;
            }

            return new Tuple<>(alleleCount, possibleTerms);

        }

        @Override
        public boolean tryAdvance(Consumer action) {
            if (myCurrentSite < myFence) {
                forEachRemaining(action);
                return true;
            } else {
                return false;
            }
        }

        @Override
        /**
         * Splits sites
         */
        public Spliterator trySplit() {
            int lo = myCurrentSite;
            int mid = lo + myMinSitesToProcess;
            if (mid < myFence) {
                myCurrentSite = mid;
                return new EndelmanSiteSpliterator(myGenotypes, lo, mid, myMaxAlleles, myProgressListener);
            } else {
                return null;
            }
        }

        @Override
        public long estimateSize() {
            return (long) (myFence - myCurrentSite);
        }

        @Override
        public int characteristics() {
            return IMMUTABLE;
        }
    }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy