net.maizegenetics.analysis.imputation.RephaseParents Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.imputation;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.nio.file.StandardOpenOption;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import org.apache.commons.math3.distribution.BinomialDistribution;
import org.apache.log4j.Logger;
import net.maizegenetics.analysis.data.FileLoadPlugin;
import net.maizegenetics.analysis.data.FileLoadPlugin.TasselFileType;
import net.maizegenetics.dna.snp.GenotypeTable;
import net.maizegenetics.dna.snp.GenotypeTableUtils;
import net.maizegenetics.dna.snp.NucleotideAlignmentConstants;
public class RephaseParents {
private static Logger myLogger = Logger.getLogger(RephaseParents.class);
private static final byte NN = GenotypeTable.UNKNOWN_DIPLOID_ALLELE;
private static final byte N = GenotypeTable.UNKNOWN_ALLELE;
private static final byte AA = NucleotideAlignmentConstants.getNucleotideDiploidByte("AA");
private static final byte CC = NucleotideAlignmentConstants.getNucleotideDiploidByte("CC");
private static final byte GG = NucleotideAlignmentConstants.getNucleotideDiploidByte("GG");
private static final byte TT = NucleotideAlignmentConstants.getNucleotideDiploidByte("TT");
private static final byte missingState = (byte) 4;
GenotypeTable origGeno;
Map progenyStates;
List plotList;
// Map plotMap;
Map rephasedParents;
Map startingParents = null;
Map parentHaplotypeProbabilities = null; //probability that the haplotype equals the major allele
//parameters
int minFamilySize = 10;
int minDepth = 7;
String outputFilename;
public RephaseParents() {
}
/**
* @param originalGenotypes the GenotypeTable containing the original data being imputed
* @param phasedProgeny the previously imputed progeny states (0 - 4, 4 = missing)
* @param plotList the parentage information
* @param parentHapmap the parent haplotypes assigned in the previous round
*/
public RephaseParents(GenotypeTable originalGenotypes, Map phasedProgeny, List plotList, Map parentHapmap) {
origGeno = originalGenotypes;
progenyStates = phasedProgeny;
this.plotList = plotList;
startingParents = parentHapmap;
}
public RephaseParents(GenotypeTable originalGenotypes, String phasedProgeny, String parentage, String parentHaps) {
origGeno = originalGenotypes;
GenotypeTable progenyStatesTable = (GenotypeTable) FileLoadPlugin.runPlugin(phasedProgeny);
progenyStates = progenyStates(progenyStatesTable);
myLogger.info(String.format("progeny states loaded: %s", phasedProgeny));
try {
plotList = Files.lines(Paths.get(parentage)).skip(1).map(in -> in.split("\t")).collect(Collectors.toList());
myLogger.info(String.format("plotList has %d entries", plotList.size()));
} catch (IOException e) {
throw new RuntimeException("Unable to read " + parentage, e);
}
startingParents = ImputationUtils.restorePhasedHaplotypes(Paths.get(parentHaps));
myLogger.info(String.format("Starting parent haplotypes loaded: %s", parentHaps));
}
Map rephaseUsingAlleleDepth() {
return rephaseUsingAlleleDepth(null);
}
Map rephaseUsingAlleleDepth(String saveFilename) {
Map nextHaplotypeProbs = new HashMap<>();
//can phase each parent using all progeny with a phased other parent
//for each parent create a list of all plots for that parent for which the other parent is phased
Map> parentPlotMap = new HashMap<>();
for (String[] plot : plotList) {
if (startingParents.get(plot[2]) != null) {
List parentPlotList = parentPlotMap.get(plot[1]);
if (parentPlotList == null) {
parentPlotList = new ArrayList<>();
parentPlotMap.put(plot[1], parentPlotList);
}
parentPlotList.add(plot);
}
if (!plot[2].equals(plot[1]) && startingParents.get(plot[1]) != null) {
List parentPlotList = parentPlotMap.get(plot[2]);
if (parentPlotList == null) {
parentPlotList = new ArrayList<>();
parentPlotMap.put(plot[2], parentPlotList);
}
parentPlotList.add(plot);
}
}
//for each parent haplotype, at each site, calculate the probability that the haplotype is the major allele
for (String parent : parentPlotMap.keySet()) {
if (startingParents.get(parent) != null) {
double[][] probs = rephasePreviouslyPhased(parent, parentPlotMap.get(parent));
nextHaplotypeProbs.put(parent, probs);
}
}
parentHaplotypeProbabilities = nextHaplotypeProbs;
//save the rephased haplotypes to a file
// String savename = "/Users/pbradbury/Documents/projects/teosinte/haplotypes/C2_rephased_parents.bin";
if (saveFilename != null && saveFilename.length() > 1) {
try {
FileOutputStream fos = new FileOutputStream(new File(saveFilename));
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(parentHaplotypeProbabilities);
oos.close();
} catch (IOException e) {
e.printStackTrace();
}
}
return parentHaplotypeProbabilities;
}
double[][] rephasePreviouslyPhased(String parent, List plotList) {
//calculate P(hap=major) for each haplotype
//P(hap=a | obs) = P(hap=a | obs,other=a)*P(other=a) + P(hap=a | obs,other=b)*P(other=b)
// ~ P(obs | hap=a, other=a)*P(other=a) + P(obs | hap=a, other=b)*P(other=b)
//for each site
//P(hap=a)=P(hap=b)=0.5
//for P(other=a), P(other=b) = allele freq of a and b in total population
//for each parent haplotype
//group progeny into those with other parent carrying the major allele (a) vs. the minor allele (b)
//add up the allele depths for each group. These are the obs.
//calculate P(obs|...) from the binomial distribution
//calculate P(hap=major) and store the result
double err = 0.01;
int nsites = origGeno.numberOfSites();
double[][] haplotypeProbability = new double[2][nsites];
for (int i = 0; i < 2; i++) Arrays.fill(haplotypeProbability[i], Double.NaN);
for (int s = 0; s < nsites; s++) {
byte major = origGeno.majorAllele(s);
byte minor = origGeno.minorAllele(s);
if (minor == N) {
for (int i = 0; i < 2; i++) haplotypeProbability[i][s] = 1;
} else {
double majorFreq = origGeno.majorAlleleFrequency(s);
double minorFreq = origGeno.minorAlleleFrequency(s);
//sum allele depths across all plots and by progeny state
int[] totalAlleleDepths = new int[6];
int[][] stateAlleleDepths = new int[4][6];
int[][] parentStateAlleleDepths = new int[2][6];
int[] switchState = new int[]{0,2,1,3};
for (String[] plot : plotList) {
int taxonNdx = origGeno.taxa().indexOf(plot[0]);
int[] tempDepths = origGeno.depthForAlleles(taxonNdx, s);
byte geno = origGeno.genotype(taxonNdx, s);
int state = progenyStates.get(plot[0])[s];
if (state < 4) {
int parentState;
int myState;
if (parent.equals(plot[1])) {
if (state == 0 || state == 1) parentState = 0;
else parentState = 1;
myState = state;
} else {
if (state == 0 || state == 2) parentState = 0;
else parentState = 1;
myState = switchState[state];
}
for (int i = 0; i < 6; i++) {
totalAlleleDepths[i] += tempDepths[i];
stateAlleleDepths[myState][i] += tempDepths[i];
parentStateAlleleDepths[parentState][i] += tempDepths[i];
}
}
}
if (parentStateAlleleDepths[0][major] < 5 || parentStateAlleleDepths[0][major] < 5) {
//skip, too little data
} else {
//for each parent haplotype
//P(hap=a | obs) = P(obs | hap=a, other=a)*P(hap=a)*P(other=a) + P(obs | hap=a, other=b)*P(hap=a)*P(other=b)
//then divide by sum of P(hap=a|obs) + P(hap=b|obs)
//use origGeno allele freq for p(other=a) and p(hap=a)
//consider using something other than allele frequency for this
//perhaps using previously computed p's
//parent haplotype 0, pMajor. Only consider the observations for h00 genotypes. h01 does not need to be considered
//P(obs | h00=major) = [P(obs | h00=major, h10=major, h11=major) * P(h10=major) *P(h11=major)
// + P(obs | h00=major, h10=major, h11=minor) * P(h10=major) * P(h11=minor)
// + P(obs | h00=major, h10=minor, h11=major) * P(h10=minor) * P(h11=major)
// + P(obs | h00=major, h10=minor, h11=minor) * P(h10=minor) * P(h11=minor))] * P(h00=major)
//for h00 = major
double ph10major = new BinomialDistribution(stateAlleleDepths[0][major] + stateAlleleDepths[0][minor], err).probability(stateAlleleDepths[0][minor]); //h10 = major
double ph10minor = new BinomialDistribution(stateAlleleDepths[0][major] + stateAlleleDepths[0][minor], 0.5).probability(stateAlleleDepths[0][minor]); //h10 = minor
double ph11major = new BinomialDistribution(stateAlleleDepths[1][major] + stateAlleleDepths[1][minor], err).probability(stateAlleleDepths[1][minor]); //h11 = major
double ph11minor = new BinomialDistribution(stateAlleleDepths[1][major] + stateAlleleDepths[1][minor], 0.5).probability(stateAlleleDepths[1][minor]); //h11 = minor
double ph00major = ph10major * ph11major * majorFreq * majorFreq
+ ph10major * ph11minor * majorFreq * minorFreq
+ ph10minor * ph11major * minorFreq * majorFreq
+ ph10minor * ph11minor * minorFreq * minorFreq;
ph00major *= majorFreq;
//for h00 = minor
ph10major = new BinomialDistribution(stateAlleleDepths[0][major] + stateAlleleDepths[0][minor], 0.5).probability(stateAlleleDepths[0][major]); //h10 = major
ph10minor = new BinomialDistribution(stateAlleleDepths[0][major] + stateAlleleDepths[0][minor], err).probability(stateAlleleDepths[0][major]); //h10 = minor
ph11major = new BinomialDistribution(stateAlleleDepths[1][major] + stateAlleleDepths[1][minor], 0.5).probability(stateAlleleDepths[1][major]); //h11 = major
ph11minor = new BinomialDistribution(stateAlleleDepths[1][major] + stateAlleleDepths[1][minor], err).probability(stateAlleleDepths[1][major]); //h11 = minor
double ph00minor = ph10major * ph11major * majorFreq * majorFreq
+ ph10major * ph11minor * majorFreq * minorFreq
+ ph10minor * ph11major * minorFreq * majorFreq
+ ph10minor * ph11minor * minorFreq * minorFreq;
ph00minor *= minorFreq;
haplotypeProbability[0][s] = ph00major / (ph00major + ph00minor);
//for h01 = major
ph10major = new BinomialDistribution(stateAlleleDepths[2][major] + stateAlleleDepths[2][minor], err).probability(stateAlleleDepths[2][minor]); //h10 = major
ph10minor = new BinomialDistribution(stateAlleleDepths[2][major] + stateAlleleDepths[2][minor], 0.5).probability(stateAlleleDepths[2][minor]); //h10 = minor
ph11major = new BinomialDistribution(stateAlleleDepths[3][major] + stateAlleleDepths[3][minor], err).probability(stateAlleleDepths[3][minor]); //h11 = major
ph11minor = new BinomialDistribution(stateAlleleDepths[3][major] + stateAlleleDepths[3][minor], 0.5).probability(stateAlleleDepths[3][minor]); //h11 = minor
double ph01major = ph10major * ph11major * majorFreq * majorFreq
+ ph10major * ph11minor * majorFreq * minorFreq
+ ph10minor * ph11major * minorFreq * majorFreq
+ ph10minor * ph11minor * minorFreq * minorFreq;
ph01major *= majorFreq;
//for h01 = minor
ph10major = new BinomialDistribution(stateAlleleDepths[2][major] + stateAlleleDepths[2][minor], 0.5).probability(stateAlleleDepths[2][major]); //h10 = major
ph10minor = new BinomialDistribution(stateAlleleDepths[2][major] + stateAlleleDepths[2][minor], err).probability(stateAlleleDepths[2][major]); //h10 = minor
ph11major = new BinomialDistribution(stateAlleleDepths[3][major] + stateAlleleDepths[3][minor], 0.5).probability(stateAlleleDepths[3][major]); //h11 = major
ph11minor = new BinomialDistribution(stateAlleleDepths[3][major] + stateAlleleDepths[3][minor], err).probability(stateAlleleDepths[3][major]); //h11 = minor
double ph01minor = ph10major * ph11major * majorFreq * majorFreq
+ ph10major * ph11minor * majorFreq * minorFreq
+ ph10minor * ph11major * minorFreq * majorFreq
+ ph10minor * ph11minor * minorFreq * minorFreq;
ph01minor *= minorFreq;
haplotypeProbability[1][s] = ph01major / (ph01major + ph01minor);
}
}
}
return haplotypeProbability;
}
Map rephaseUsingCrossProgeny() {
rephasedParents = new HashMap<>();
int[] firstParentChr = new int[]{0,0,1,1};
int[] secondParentChr = new int[]{0,1,0,1};
//for each parent of an outcross, get list of outcross progeny plots, store in parentPlotMap
Map> parentPlotMap = new HashMap<>();
for (String[] plot : plotList) {
if (plot[3].equals("outcross")) {
List parentPlotList = parentPlotMap.get(plot[1]);
if (parentPlotList == null) {
parentPlotList = new ArrayList<>();
parentPlotMap.put(plot[1], parentPlotList);
}
parentPlotList.add(plot);
if (!plot[2].equals(plot[1])) {
parentPlotList = parentPlotMap.get(plot[2]);
if (parentPlotList == null) {
parentPlotList = new ArrayList<>();
parentPlotMap.put(plot[2], parentPlotList);
}
parentPlotList.add(plot);
}
}
}
int nsites = origGeno.numberOfSites();
//iterate through parents
for (String parent : parentPlotMap.keySet()) {
//debug
System.out.printf("Rephasing %s\n", parent);
//haplotypeList contains a list of haplotypes inferred for each of the progeny of this parent
List haplotypeList = new ArrayList<>();
List parentPlotList = parentPlotMap.get(parent);
if (parentPlotList == null) {
System.out.printf("parentPlotList null for %s\n", parent);
continue;
}
if (parentPlotList.size() < minFamilySize) {
System.out.printf("parentPlotList has %d plots for %s\n", parentPlotList.size(), parent);
continue;
}
//for each progeny (plot[0] is the progeny name)
for (String[] plot : parentPlotList) {
//is parent the plot[1] or plot[2]?
String otherParent;
boolean isFirstParent;
if (plot[1].equals(parent)) {
otherParent = plot[2];
isFirstParent = true;
}
else {
otherParent = plot[1];
isFirstParent = false;
}
//use all other parents, it may help to use only self parents but whatever
int progenyIndex = origGeno.taxa().indexOf(plot[0]);
byte[][] parentHap = new byte[2][nsites];
for (int i = 0; i < 2; i++) Arrays.fill(parentHap[i], N);
byte[] myStates = progenyStates.get(plot[0]);
byte[][] otherParentHap = startingParents.get(otherParent);
if (otherParentHap == null || myStates == null) continue;
for (int s = 0;s < nsites; s++) {
if (myStates[s] == missingState) continue;
byte myGenotype = origGeno.genotype(progenyIndex, s);
if (myGenotype == NN) continue;
int myChr, otherChr;
if (isFirstParent) {
myChr = firstParentChr[myStates[s]];
otherChr = secondParentChr[myStates[s]];
}
else {
otherChr = firstParentChr[myStates[s]];
myChr = secondParentChr[myStates[s]];
}
byte otherAllele = otherParentHap[otherChr][s];
if (otherAllele == N) continue;
int mydepth = origGeno.depth().depth(progenyIndex, s);
if (GenotypeTableUtils.isHeterozygous(myGenotype)) {
byte[] alleles = GenotypeTableUtils.getDiploidValues(myGenotype);
if (otherAllele == alleles[0]) parentHap[myChr][s] = alleles[1];
if (otherAllele == alleles[1]) parentHap[myChr][s] = alleles[0];
} else { //progeny has homozygous genotype
byte[] alleles = GenotypeTableUtils.getDiploidValues(myGenotype);
if (alleles[0] != otherAllele && mydepth < 9) parentHap[myChr][s] = alleles[0];
else if (mydepth >= minDepth && otherAllele == alleles[0]) parentHap[myChr][s] = alleles[0];
}
}
haplotypeList.add(parentHap);
}
//get majority allele at each site and major allele frequency
byte[][] newhaps = new byte[2][nsites];
Arrays.fill(newhaps[0], N);
Arrays.fill(newhaps[1], N);
for (int s = 0; s < nsites; s++) {
byte major = origGeno.majorAllele(s);
byte minor = origGeno.minorAllele(s);
int[][] alleleCount = new int[2][6];
for (byte[][] hap : haplotypeList) {
for (int i = 0; i < 2; i++) {
byte val = hap[i][s];
if (val < 6) alleleCount[i][val]++;
}
}
for (int i = 0; i < 2; i++) {
int[] order = countSortOrder(alleleCount[i], true);
if (alleleCount[i][order[0]] > 2 * alleleCount[i][order[1]]) {
byte myAllele = (byte) order[0];
if (myAllele == major || myAllele == minor) newhaps[i][s] = myAllele;
}
}
}
rephasedParents.put(parent, newhaps);
}
return rephasedParents;
}
public void setMinDepth(int mindepth) {
minDepth = mindepth;
}
public static int[] countSortOrder(int[] counts, boolean descending) {
int n = counts.length;
List order = IntStream.range(0, n).boxed().collect(Collectors.toList());
if (descending) {
Collections.sort(order, (a,b) -> {
if (counts[a] > counts[b]) return -1;
if (counts[a] < counts[b]) return 1;
return 0;
});
} else {
Collections.sort(order, (a,b) -> {
if (counts[a] > counts[b]) return 1;
if (counts[a] < counts[b]) return -1;
return 0;
});
}
return order.stream().mapToInt(I -> I.intValue()).toArray();
}
public static Map progenyStates(GenotypeTable gt) {
Map outputMap = new HashMap<>();
int nsites = gt.numberOfSites();
int ntaxa = gt.numberOfTaxa();
for (int t = 0; t < ntaxa; t++) {
byte[] states = new byte[nsites];
for (int s = 0; s < nsites; s++) {
byte val = GenotypeTableUtils.getDiploidValues(gt.genotype(t, s))[0];
if (val > -1 && val < 3) states[s] = val;
else states[s] = missingState;
}
outputMap.put(gt.taxaName(t), states);
}
return outputMap;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy