net.maizegenetics.analysis.imputation.TransitionProbability Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.imputation;
public class TransitionProbability {
protected double[][] probabilityOfATransition;
protected double[][] adjustedProbability;
protected int[] positions;
protected double avgSegmentLength = Double.NaN;
/**
* Use this function to set the transition probability matrix when it is to be used without specifying nodes for getTransitionProbability
* @param probabilityMatrix the matrix of transition probabilities, rows = state1, columns = state2
*/
public void setTransitionProbability(double[][] probabilityMatrix) {
probabilityOfATransition = probabilityMatrix;
}
public double getTransitionProbability(int state1, int state2) {
return adjustedProbability[state1][state2];
// return probabilityOfATransition[state1][state2];
}
public double getLnTransitionProbability(int state1, int state2) {
return Math.log(getTransitionProbability(state1, state2));
}
public int getNumberOfStates() {
return probabilityOfATransition.length;
}
/**
* @param transitionCounts the transition counts for this set of
* @param chromosomeLength
* @param numberOfTaxa
*/
public void setTransitionCounts(int[][] transitionCounts, int chromosomeLength, int numberOfTaxa) {
int n = transitionCounts.length;
int totalTransitions = 0;
int[] rowSums = new int[n];
int rowCount = 0;
for (int[] row:transitionCounts) {
for (int cell: row) {
totalTransitions += cell;
rowSums[rowCount] += cell;
}
rowCount++;
}
avgSegmentLength = ((double) chromosomeLength) * ((double) numberOfTaxa) / ((double) totalTransitions);
probabilityOfATransition = new double[n][n];
for (int row = 0; row < n; row++) {
for (int col = 0; col < n; col++) {
probabilityOfATransition[row][col] = ((double) transitionCounts[row][col]) / ((double) rowSums[row]);
}
}
}
public void setNode(int node) {
if (node <= 0) return;
int n = probabilityOfATransition.length;
adjustedProbability = new double[n][n];
int segmentLength = Math.abs(positions[node] - positions[node - 1]);
double m;
for (int row = 0; row < n; row++) {
double offdiagsum = 0;
for (int col = 0; col < n; col++) {
if (col != row) {
m = -Math.log(1 - 2 * probabilityOfATransition[row][col]) * segmentLength / avgSegmentLength / 2;
adjustedProbability[row][col] = (1 - Math.exp(-2*m)) / 2;
offdiagsum += adjustedProbability[row][col];
}
}
adjustedProbability[row][row] = 1 - offdiagsum;
}
}
public void setAverageSegmentLength(double length) { avgSegmentLength = length; }
public void setPositions(int[] positions) { this.positions = positions; }
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy