All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.maizegenetics.stats.EMMA.EMMAforDoubleMatrix Maven / Gradle / Ivy

Go to download

TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage disequilibrium.

There is a newer version: 5.2.94
Show newest version
package net.maizegenetics.stats.EMMA;

import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
import net.maizegenetics.matrixalgebra.decomposition.EigenvalueDecomposition;
import net.maizegenetics.stats.linearmodels.LinearModelUtils;

import org.apache.log4j.Logger;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.stream.IntStream;

/**
 * Class for implementation of the EMMA algorithm often used in GWAS.  Initially developer by
 * Kang et al Genetics March 2008 178:1709-1723
 */
public class EMMAforDoubleMatrix {
	
	private static final Logger myLogger = Logger.getLogger(EMMAforDoubleMatrix.class);
	protected DoubleMatrix y;
	
    protected double[] lambda;
    protected double[] eta2;
    protected double c;
    protected int N;
    protected int q;
    protected int Nran;
    protected int dfMarker = 0;
    
    protected DoubleMatrix Xoriginal = null;
//    protected DoubleMatrix A;
    protected DoubleMatrix X;
    protected DoubleMatrix Zoriginal = null;
    protected DoubleMatrix Z = null;
//    protected DoubleMatrix transZ;
    protected DoubleMatrix K;
    protected EigenvalueDecomposition eig;
    protected EigenvalueDecomposition eigA;
    protected DoubleMatrix U;
    protected DoubleMatrix invH;
    protected DoubleMatrix invXHX;
    
    protected DoubleMatrix beta;
    protected DoubleMatrix Xbeta;
    protected double ssModel;
    protected double ssError;
    protected double SST;
    protected double Rsq;
    protected int dfModel;
    protected int dfError;
    protected double delta;
    protected double varResidual;
    protected double varRandomEffect;
    protected DoubleMatrix blup;
    protected DoubleMatrix pred;
    protected DoubleMatrix res;
    protected DoubleMatrix pev;
    protected double lnLikelihood;
    protected boolean findDelta = true;
    protected boolean calculatePEV = false;
    
    protected double lowerlimit = 1e-5;
    protected double upperlimit = 1e5;
    protected int nregions = 100;
    protected double convergence = 1e-10;
    protected int maxiter = 50;
    protected int subintervalCount = 0;

	public EMMAforDoubleMatrix(DoubleMatrix y, DoubleMatrix fixed, DoubleMatrix kin, int nAlleles) {
		this(y, fixed, kin, nAlleles, Double.NaN);
	}
	
	/**
	 * This constructor assumes that Z is the identity matrix for calculating blups, predicted values and residuals. If that is not true use
	 * the contstructor that explicity takes Z. This constructor treats A as ZKZ' so it can be used if blups and residuals are not needed.
	 * @param data
	 * @param fixed
	 * @param kin
	 * @param nAlleles
	 * @param delta
	 */
	public EMMAforDoubleMatrix(DoubleMatrix data, DoubleMatrix fixed, DoubleMatrix kin, int nAlleles, double delta) {
		//throw an error if X is less than full column rank
		dfModel = fixed.numberOfColumns();
		
		int rank = fixed.columnRank();
		if (rank < dfModel) throw new IllegalArgumentException("The fixed effect design matrix has less than full column rank. The analysis will not be run.");
		if (!Double.isNaN(delta)) {
			this.delta = delta;
			findDelta = false;
		} 
		
		y = data;
		if (y.numberOfColumns() > 1 && y.numberOfRows() == 1) this.y = y.transpose();
		
		N = y.numberOfRows();
		X = fixed;

		q = X.numberOfColumns();
//		A = kin;
		K = kin;
		Nran = K.numberOfRows();
        Z = DoubleMatrixFactory.DEFAULT.identity(Nran);
        
		dfMarker = nAlleles - 1;
		init();
	}
        
	/**
	 * This constructor should be used when Z is not the identity matrix. Z is needed to calculate blups and residuals.
	 * @param data
	 * @param fixed
	 * @param kin
	 * @param inZ
	 * @param nAlleles
	 * @param delta
	 */
	public EMMAforDoubleMatrix(DoubleMatrix data, DoubleMatrix fixed, DoubleMatrix kin, DoubleMatrix inZ, int nAlleles, double delta) {
		dfModel = fixed.numberOfColumns();

		int rank = fixed.columnRank();
		if (rank < dfModel) throw new IllegalArgumentException("The fixed effect design matrix has less than full column rank. The analysis will not be run.");
		if (!Double.isNaN(delta)) {
			this.delta = delta;
			findDelta = false;
		} 

		y = data;
		if (y.numberOfColumns() > 1 && y.numberOfRows() == 1) this.y = y.transpose();

		N = y.numberOfRows();
		X = fixed;

		q = X.numberOfColumns();
		Z = inZ;
		K = kin;

//		A = Z.mult(K).tcrossproduct(Z);

		Nran = Z.numberOfRows();
		dfMarker = nAlleles - 1;
		init();
	}
        
        /**
	 * This constructor is designed for G-BLUP.
         * Uses kinship matrix with phenotypes in same order. 
         * Phenotypes = NaN for prediction set.
         * Assumes that Z is the identity matrix for calculating blups, predicted values and residuals. If that is not true use
	 * the constructor that explicity takes Z. This constructor treats A as ZKZ' so it can be used if blups and residuals are not needed.
	 * @param data A column double matrix of phenotypic values (number of individuals x 1 taxa ID column + number of traits)
	 * @param fixed
	 * @param kin
	 */
	public EMMAforDoubleMatrix(DoubleMatrix data, DoubleMatrix fixed, DoubleMatrix kin) {
		//throw an error if X is less than full column rank
		dfModel = fixed.numberOfColumns();
		
		int rank = fixed.columnRank();
		if (rank < dfModel) throw new IllegalArgumentException("The fixed effect design matrix has less than full column rank. The analysis will not be run.");
		
		if (data.numberOfColumns() > 1 && data.numberOfRows() == 1) 
                    throw new IllegalArgumentException("The phenotype data must be a column matrix.");
                               
		//remove rows in data with missing phenotypic values from Y and Z
		K = kin;
		Nran = K.numberOfRows();
		//int nonmissingY = (int) Arrays.stream(data.to1DArray()).filter(d -> ! Double.isNaN(d)).count();
		//int[] nonmissingIndex = new int[nonmissingY];
		int[] nonmissingIndex = IntStream.range(0, Nran).filter(i -> ! Double.isNaN(data.get(i,0))).toArray();
		y = data.getSelection(nonmissingIndex, null);
		Zoriginal = DoubleMatrixFactory.DEFAULT.identity(Nran);
		Z = Zoriginal.getSelection(nonmissingIndex, null);

		N = y.numberOfRows();

		Xoriginal = fixed;
		X = fixed.getSelection(nonmissingIndex, null);
                
		q = X.numberOfColumns();
	
		init();
	}
	
    protected void init() {
        int nreml = N - q;
        c = nreml * Math.log(nreml / 2 / Math.PI) - nreml;
        
        lambda = new double[nreml];
        
        //find the eigenvalues of A
        DoubleMatrix A = Z.mult(K).tcrossproduct(Z);
        eigA = A.getEigenvalueDecomposition();
        double[] eigenvalA = eigA.getEigenvalues();
        int n = eigenvalA.length;
        
        double min = eigenvalA[0];
        for (int i = 1; i < n; i++) min = Math.min(min, eigenvalA[i]);
        double bend = 0.0;
        if (min < 0.01) bend = -1 * min + 0.5;
        
        //S = I - X inv(X'X) X'
        //X is assumed to be of full column rank, i.e. X'X is non-singular
        DoubleMatrix[] XtXGM = X.getXtXGM();
        DoubleMatrix XtX = XtXGM[0];
        DoubleMatrix S = XtXGM[2];
        DoubleMatrix G = XtXGM[1];
                
        //determine the s
        //add bend to the diagonal of A
        //this is necessary to get correct decomposition of SAS
        n = A.numberOfRows();
        for (int i = 0; i < n; i++) A.set(i, i, A.get(i, i) + bend);
        DoubleMatrix SAS = S.mult(A.mult(S)); 
        
        //decompose SAS
        eig = SAS.getEigenvalueDecomposition();
        
        //which are the zero eigenvalues?
        double[] eigenval = eig.getEigenvalues();
        int[] ndx = getSortedIndexofAbsoluteValues(eigenval);
        int[] eigndx = new int[nreml];
        for (int i = 0; i < nreml; i++) eigndx[i] = ndx[i];
        
        //sort V to get U
        DoubleMatrix V = eig.getEigenvectors();
        U = V.getSelection(null, ndx);

        //derive lambda
        for (int i = 0; i < nreml; i++) lambda[i] = eigenval[eigndx[i]] - bend;
    }

    private int[] getSortedIndexofAbsoluteValues(double[] values) {
    	int n = values.length;
    	int[] index = new int[n];
    	
    	class Pair implements Comparable {
    		int order;
    		double absvalue;
    		
    		Pair(int order, double value){
    			this.order = order;
    			this.absvalue = Math.abs(value);
    		}
    		
    		@Override
			public int compareTo(Pair other) {
    			if (absvalue < other.absvalue) return 1;
    			if (absvalue > other.absvalue) return -1;
				return 0;
			}
    	}
    	
    	Pair[] valuePairs = new Pair[n];
    	for (int i = 0; i < n; i++) {
    		valuePairs[i] = new Pair(i, values[i]);
    	}
    	
    	Arrays.sort(valuePairs);
    	
    	for (int i = 0; i < n; i++) index[i] = valuePairs[i].order;
    	return index;
    }
    
	public void solve() {
		
		//calculate eta squared
        DoubleMatrix eta = U.crossproduct(y);
        int nrows = eta.numberOfRows();
        eta2 = new double[nrows];
        for (int i = 0; i < nrows; i++) eta2[i] = eta.get(i, 0) * eta.get(i, 0);
        
        if (findDelta) {
            double[] interval = new double[]{lowerlimit, upperlimit};
            delta = findDeltaInInterval(interval);
            
        }
        
		lnLikelihood = lnlk(delta);
		invH = inverseH(delta);
		beta = calculateBeta();
		double genvar = getGenvar(beta);

	    dfModel = q - 1;
	    dfError = N - q;
	    varResidual = genvar * delta;
	    varRandomEffect = genvar;
	}

	public void calculateBlupsPredictedResiduals() {
        calculateBLUP();
        pred = calculatePred();
        res = calculateRes();
	}
	
	public void calculateBlupsPredicted() {
        calculateBLUP();
        pred = calculatePred();
	}
        
	private double findDeltaInInterval(double[] interval) {
        double[][] d = scanlnlk(interval[0], interval[1]);

        double[][] sgnchange = findSignChanges(d);
        int nchanges = sgnchange.length;
        double[] bestd = new double[]{Double.NaN, Double.NaN, Double.NaN};
        int n = d.length;
        
        //find the element of d with maximum ln Likelihood (bestd)
        for (int i = 0; i < n; i++) {
            if (Double.isNaN(bestd[1])) bestd = d[i];
            else if (!Double.isNaN(d[i][1]) && d[i][1] > bestd[1]) bestd = d[i];
        }
        
        double bestdelta = bestd[0];
        double lkDelta = bestd[1];
        for (int i = 0; i < nchanges; i++) {
            double newdelta = findMaximum(sgnchange[i]);
            if (!Double.isNaN(newdelta)) {
                double newlk = lnlk(newdelta);
                if (!Double.isNaN(newlk) && newlk > lkDelta) {
                    bestdelta = newdelta;
                    lkDelta = newlk;
                }
            }
        }
        return bestdelta;
	}

    private double lnlk(double delta) {
        double term1 = 0;
        double term2 = 0;
        int n = N - q;
        
        for (int i = 0; i < n; i++) {
            double val = (lambda[i] + delta);
            if (val < 0) return Double.NaN;
            term1 += eta2[i] / val;
            term2 += Math.log(val);
        }
        return (c - n * Math.log(term1) - term2) / 2;
    }
    
    private double d1lnlk(double delta) {
        double term1 = 0;
        double term2 = 0;
        double term3 = 0;
        int n = N - q;
        
        for (int i = 0; i < n; i++) {
            double val = 1 / (lambda[i] + delta);
            double val2 = eta2[i] * val;
            term1 += val2;
            term2 += val2 * val;
            term3 += val;
        }
        
        return n * term2 / term1 / 2 - term3 / 2;
    }

    private double[][] scanlnlk(double lower, double upper) {
        double[][] result = new double[nregions][3];
        upper = Math.log10(upper);
        lower = Math.log10(lower);
        double incr = (upper - lower) / (nregions - 1);
        
        for (int i = 0; i < nregions; i++) {
            double delta = Math.pow(10.0, lower + i * incr);
            result[i][0] = delta;
            result[i][1] = lnlk(delta);
            result[i][2] = d1lnlk(delta);
        }
        
        return result;
    }
    
    private double[][] findSignChanges(double[][] scan) {
    	ArrayList changes = new ArrayList();
    	int n = scan.length;
    	for (int i = 0; i < n - 1; i++) {
    		if (scan[i][2] > 0 && scan[i+1][2] <= 0 && !Double.isNaN(scan[i][1])) changes.add(new Double[]{scan[i][0], scan[i+1][0]});
    	}
    	n = changes.size();
    	double[][] result = new double[n][2];
    	for (int i = 0; i < n; i++) {
    	    result[i][0] = changes.get(i)[0];
    	    result[i][1] = changes.get(i)[1];
    	}
    	return result;
    	
    }
    
    private double findMaximum(double[] interval) {
    	
        //uses Newton Raphson to find local maximum
    	//updates delta using delta' = delta - d1/d2
    	//where d1 is the first derivative of lnlk at delta and 
    	//d2 is the second derivative of lnlk at delta
        
        //the local maximum is expected to fall between delta and max
        //if the algorithm finds a new delta outside this interval
        //then the likelihood is not well behaved in this interval 
        //subdivide the interval and try again
        double delta = interval[0];
    	boolean end = false;
    	int n = N - q;
    	int nIterations = 0;
    	while (!end && nIterations < maxiter) { 
    		//A = sum[eta2/(lambda + delta)]
    		//B = sum[eta2/(lambda + delta)^2]
    		//C = sum[eta2/(lambda + delta)^3]
    		//D = sum[1/(lambda + delta)]
    		//E = sum[1/(lambda + delta)^2]
    		double A = 0;
    		double B = 0;
    		double C = 0;
    		double D = 0;
    		double E = 0;
    		for (int i = 0; i < n; i++) {
    			double val = lambda[i] + delta;
    			double val2 = val * val;
    			double val3 = val2 * val;
    			A += eta2[i]/val;
    			B += eta2[i]/val2;
    			C += eta2[i]/val3;
    			D += 1/val;
    			E += 1/val2;
    		}

    		double d1 = n*B/A - D;
    		if (Math.abs(d1) < convergence) end = true;
    		else {
    			double d2 = E + n*(B*B - 2*A*C)/A/A;
    			delta = delta - d1/d2;
    		}
    		
    		if (delta < interval[0] || delta > interval[1]) {
    		    subintervalCount++;
    		    if (subintervalCount > 3) {
    		        subintervalCount = 0;
    		        return Double.NaN;
    		    }
    		    delta = findDeltaInInterval(interval);
    		    end = true;
    		}
    		
    		nIterations++;
    	}
    	subintervalCount = 0;
    	return delta;
    }

    private DoubleMatrix inverseH(double delta) {
    	DoubleMatrix V = eigA.getEigenvectors();
    	DoubleMatrix D = eigA.getEigenvalueMatrix();
    	
    	int n = D.numberOfRows();
    	for (int i = 0; i < n; i++) D.set(i, i, 1 / (D.get(i, i) + delta));
    	return V.mult(D.tcrossproduct(V));
    }
    
    private DoubleMatrix calculateBeta() {
    	DoubleMatrix XtH = X.crossproduct(invH);
    	invXHX = XtH.mult(X).inverse();
    	return invXHX.mult(XtH.mult(y));
    }
    
    public void calculateBLUP(){
        Xbeta = X.mult(beta);
        DoubleMatrix YminusXbeta = y.minus(Xbeta);
        DoubleMatrix KtransZ = K.mult(Z.transpose());
        DoubleMatrix KtransZinvH = KtransZ.mult(invH);
        blup = KtransZinvH.mult(YminusXbeta);
        
        if (calculatePEV) {
        	DoubleMatrix KZHX = KtransZinvH.mult(X);
        	DoubleMatrix pevMatrix = K.copy();
        	pevMatrix = pevMatrix.minus(KtransZinvH.tcrossproduct(KtransZ));
        	pevMatrix = pevMatrix.minus(KZHX.mult(invXHX).tcrossproduct(KZHX));
        	int size = pevMatrix.numberOfRows();
        	pev = DoubleMatrixFactory.DEFAULT.make(size, 1);
        	for (int i = 0; i < size; i++) pev.set(i, 0, pevMatrix.get(i, i));
        	pev.scalarMultEquals(varRandomEffect);
        }
    }
    
    private DoubleMatrix calculatePred(){
        if (Xoriginal == null){
            Xbeta = X.mult(beta);
            DoubleMatrix Zu = Z.mult(blup);
            return Xbeta.plus(Zu);
        }else{
            Xbeta = Xoriginal.mult(beta);
            //System.out.printf("Dimensions of Xbeta are %d,%d\n",Xbeta.numberOfRows(),Xbeta.numberOfColumns());
            DoubleMatrix Zu = Zoriginal.mult(blup);
            //System.out.printf("Dimensions of Zu are %d,%d\n",Zu.numberOfRows(),Zu.numberOfColumns());
            return Xbeta.plus(Zu);
        }
    }
 
    private DoubleMatrix calculateRes(){
        return y.minus(pred);
    }
    
    private double getGenvar(DoubleMatrix beta) {
    	DoubleMatrix res = y.copy();
    	res.minusEquals(X.mult(beta));
    	return res.crossproduct(invH.mult(res)).get(0,0) / (N - q);
    }

	public int getDfMarker() {
		return dfMarker;
	}

	public DoubleMatrix getBeta() {
		return beta;
	}

	public int getDfModel() {
		return dfModel;
	}

	public int getDfError() {
		return dfError;
	}

	public double getDelta() {
		return delta;
	}
	
	public DoubleMatrix getInvH() {
		return invH;
	}

	public double getVarRes() {
		return varResidual;
	}

	public double getVarRan() {
		return varRandomEffect;
	}

	public DoubleMatrix getBlup() {
		return blup;
	}

	public DoubleMatrix getPev() {
		return pev;
	}
	
	public DoubleMatrix getPred() {
		return pred;
	}

	public DoubleMatrix getRes() {
		return res;
	}

	public double getLnLikelihood() {
		return lnLikelihood;
	}

        
	/**
	 * @return	For markers with 2 df, F.fullModel, p.fullModel, additive effect, Fadd, padd, dominance effect, Fdom, pdom
	 * 			For markers with other than 2 df, F and p for the full model only
	 */
	public double[] getMarkerFp() {
		if (dfMarker < 1) return new double[]{Double.NaN, Double.NaN, Double.NaN}; 
		int nparm = beta.numberOfRows();
		int firstmarker = nparm - dfMarker;
		DoubleMatrix M = DoubleMatrixFactory.DEFAULT.make(dfMarker, nparm);
		for (int i = 0; i < dfMarker; i++) M.set(i, i + firstmarker, 1);
		DoubleMatrix MB = M.mult(beta);
		DoubleMatrix invMiM = M.mult(invXHX.tcrossproduct(M));
		invMiM.invert();
		double F = MB.crossproduct(invMiM.mult(MB)).get(0,0);
		F /= varRandomEffect;
		F /= dfMarker;
		double p;
		try {
			p = LinearModelUtils.Ftest(F, dfMarker, N - q);
		} catch (Exception e) {p = Double.NaN;}
		
		if (dfMarker != 2) return new double[]{F,p};
		
		//calculate add and dom effects and tests
		//assumes the betas are for the two homozygous classes and that the het effect = 0;
    	//additive test
		double Fadd, Fdom, padd, pdom;
        M = DoubleMatrixFactory.DEFAULT.make(1, nparm, 0);
        M.set(0, nparm - 2, 0.5);
        M.set(0, nparm - 1, -0.5);
            
        MB = M.mult(beta);
        double addEffect = MB.get(0, 0);
        try {
        	Fadd = addEffect * addEffect / (M.mult(invXHX.tcrossproduct(M))).get(0,0) / varRandomEffect;
        } catch (Exception ex) {
        	Fadd = Double.NaN;
        }
        try {
            padd = LinearModelUtils.Ftest(Fadd, 1, N - q);
        } catch (Exception e) {
            padd = Double.NaN;
        }

        //dominance test
        M = DoubleMatrixFactory.DEFAULT.make(1, nparm, 0);
        M.set(0, nparm - 2, -0.5);
        M.set(0, nparm - 1, -0.5);
            
        MB = M.mult(beta);
        double domEffect = MB.get(0, 0);
        try {
        	Fdom = domEffect * domEffect / (M.mult(invXHX.tcrossproduct(M))).get(0,0) / varRandomEffect;
        } catch (Exception ex) {
        	Fdom = Double.NaN;
        }
        try {
            pdom = LinearModelUtils.Ftest(Fdom, 1, N - q);
        } catch (Exception e) {
            pdom = Double.NaN;
        }

        return new double[]{F,p,addEffect,Fadd,padd,domEffect,Fdom,pdom};
	}
	
	public void solveWithNewData(DoubleMatrix y) {
		this.y = y;
		solve();
	}

	public void setCalculatePEV(boolean calculatePEV) {
		this.calculatePEV = calculatePEV;
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy