net.maizegenetics.stats.linearmodels.BasicLevel Maven / Gradle / Ivy
package net.maizegenetics.stats.linearmodels;
/*
* jGLiM: Java for General Linear Models
* for more information: http://www.maizegenetics.net
*
* Copyright (C) 2005 Peter Bradbury
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*/
//package net.maizegenetics.jGLiM;
import java.util.*;
/**
* Created using IntelliJ IDEA.
* Author: Peter Bradbury
* Date: Dec 29, 2004
* Time: 9:41:55 AM
*/
public class BasicLevel implements Level{
//fields
private Comparable[] levelValues;
private int index;
private int random;
//constructors
public BasicLevel(Comparable[] levelValues) {
this.levelValues = levelValues;
}
public BasicLevel(Level[] levels) {
int nlevels = 0;
for (int i = 0; i < levels.length; i++) {
nlevels = +getNumberOfSublevels();
}
levelValues = new Comparable[nlevels];
int cnt = 0;
for (int i = 0; i < levels.length; i++) {
for (int j = 0; j < levels[i].getNumberOfSublevels(); j++) {
levelValues[cnt++] = levels[i].getSublevel(j);
}
}
}
public BasicLevel(Collection c) {
LinkedList levelList = new LinkedList();
Iterator it = c.iterator();
while (it.hasNext()) {
Level level = (Level) it.next();
for (int i = 0; i < level.getNumberOfSublevels(); i++) {
levelList.add(level.getSublevel(i));
}
}
levelValues = new Comparable[levelList.size()];
levelList.toArray(levelValues);
}
//methods
public int compareTo(Level otherLevel) {
int result;
for (int i = 0; i < levelValues.length; i++) {
result = levelValues[i].compareTo(otherLevel.getSublevel(i));
if (result != 0) return result;
}
return 0;
}
public boolean equals(Object o) {
if (!(o instanceof Level)) return false;
Level otherLevel = (Level) o;
if (levelValues.length != otherLevel.getNumberOfSublevels()) return false;
for (int i = 0; i < levelValues.length; i++) {
if (!(levelValues[i].equals(otherLevel.getSublevel(i)))) return false;
}
return true;
}
public int hashCode() {
int hashval = 0;
for (int i = 0; i < levelValues.length; i++) {
hashval += levelValues[i].hashCode();
}
return hashval;
}
public String toString() {
StringBuffer out = new StringBuffer(levelValues[0].toString());
for (int i = 1; i < levelValues.length; i++) {
out.append(":");
out.append(levelValues[i].toString());
}
return out.toString();
}
public int getNumberOfSublevels() {
return levelValues.length;
}
public Comparable[] getSublevels() {
return levelValues;
}
public Comparable getSublevel(int sublevel) {
return levelValues[sublevel];
}
public boolean contains(Comparable sublevel) {
for (int i = 0; i < levelValues.length; i++) {
if (levelValues[i].equals(sublevel)) return true;
}
return false;
}
public int getIndex() {
return index;
}
public void setIndex(int index) {
this.index = index;
}
public int getRandom() {
return random;
}
public void setRandom(int random) {
this.random = random;
}
public static Comparator indexComparator() {
return new Comparator() {
public int compare(Object o1, Object o2) {
BasicLevel basicLevel1 = (BasicLevel) o1;
BasicLevel basicLevel2 = (BasicLevel) o2;
int result = basicLevel1.compareTo(basicLevel2);
if (result != 0) return result;
return basicLevel1.getIndex() - basicLevel2.getIndex();
}
};
}
public static Comparator randomComparator() {
return new Comparator() {
public int compare(Object o1, Object o2) {
BasicLevel basicLevel1 = (BasicLevel) o1;
BasicLevel basicLevel2 = (BasicLevel) o2;
int result = basicLevel1.compareTo(basicLevel2);
if (result != 0) return result;
if (basicLevel1.getRandom() > basicLevel2.getRandom()) return 1;
if (basicLevel1.getRandom() < basicLevel2.getRandom()) return -1;
return 0;
}
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy