All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.maizegenetics.util.BitUtil Maven / Gradle / Ivy

Go to download

TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage disequilibrium.

There is a newer version: 5.2.94
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with this
 * work for additional information regarding copyright ownership. The ASF
 * licenses this file to You under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
package net.maizegenetics.util;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

/**
 * A variety of high efficiency bit twiddling routines.
 *
 * @version $Id$
 */
public class BitUtil {

    /**
     * Returns the number of bits set in the long
     */
    public static int pop(long x) {
        /* Hacker's Delight 32 bit pop function:
         * http://www.hackersdelight.org/HDcode/newCode/pop_arrayHS.cc
         *
         int pop(unsigned x) {
         x = x - ((x >> 1) & 0x55555555);
         x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
         x = (x + (x >> 4)) & 0x0F0F0F0F;
         x = x + (x >> 8);
         x = x + (x >> 16);
         return x & 0x0000003F;
         }
         ***/

        // 64 bit java version of the C function from above
        x = x - ((x >>> 1) & 0x5555555555555555L);
        x = (x & 0x3333333333333333L) + ((x >>> 2) & 0x3333333333333333L);
        x = (x + (x >>> 4)) & 0x0F0F0F0F0F0F0F0FL;
        x = x + (x >>> 8);
        x = x + (x >>> 16);
        x = x + (x >>> 32);
        return ((int) x) & 0x7F;
    }

    public static long pop_array_to_index(long A[], int index) {
        int numWords = bits2words(index + 1);
        System.out.println("numWords: " + numWords);
        long result = pop_array(A, 0, numWords - 1);
        int shift = index & 0x3f;
        shift = 63 - shift;
        long temp = A[numWords - 1] << shift;
        result = result + pop(temp);
        return result;
    }

    /**
     * * Returns the number of set bits in an array of longs.
     */
    public static long pop_array(long A[], int wordOffset, int numWords) {
        /*
         * Robert Harley and David Seal's bit counting algorithm, as documented
         * in the revisions of Hacker's Delight
         * http://www.hackersdelight.org/revisions.pdf
         * http://www.hackersdelight.org/HDcode/newCode/pop_arrayHS.cc
         *
         * This function was adapted to Java, and extended to use 64 bit words.
         * if only we had access to wider registers like SSE from java...
         *
         * This function can be transformed to compute the popcount of other functions
         * on bitsets via something like this:
         * sed 's/A\[\([^]]*\)\]/\(A[\1] \& B[\1]\)/g'
         *
         */
        int n = wordOffset + numWords;
        long tot = 0, tot8 = 0;
        long ones = 0, twos = 0, fours = 0;

        int i;
        for (i = wordOffset; i <= n - 8; i += 8) {
            /**
             * * C macro from Hacker's Delight #define CSA(h,l, a,b,c) \
             * {unsigned u = a ^ b; unsigned v = c; \ h = (a & b) | (u & v); l =
             * u ^ v;} *
             */
            long twosA, twosB, foursA, foursB, eights;

            // CSA(twosA, ones, ones, A[i], A[i+1])
            {
                long b = A[i], c = A[i + 1];
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, A[i+2], A[i+3])
            {
                long b = A[i + 2], c = A[i + 3];
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursA, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            //CSA(twosA, ones, ones, A[i+4], A[i+5])
            {
                long b = A[i + 4], c = A[i + 5];
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, A[i+6], A[i+7])
            {
                long b = A[i + 6], c = A[i + 7];
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursB, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursB = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }

            //CSA(eights, fours, fours, foursA, foursB)
            {
                long u = fours ^ foursA;
                eights = (fours & foursA) | (u & foursB);
                fours = u ^ foursB;
            }
            tot8 += pop(eights);
        }

        // handle trailing words in a binary-search manner...
        // derived from the loop above by setting specific elements to 0.
        // the original method in Hackers Delight used a simple for loop:
        //   for (i = i; i < n; i++)      // Add in the last elements
        //  tot = tot + pop(A[i]);

        if (i <= n - 4) {
            long twosA, twosB, foursA, eights;
            {
                long b = A[i], c = A[i + 1];
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long b = A[i + 2], c = A[i + 3];
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 4;
        }

        if (i <= n - 2) {
            long b = A[i], c = A[i + 1];
            long u = ones ^ b;
            long twosA = (ones & b) | (u & c);
            ones = u ^ c;

            long foursA = twos & twosA;
            twos = twos ^ twosA;

            long eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 2;
        }

        if (i < n) {
            tot += pop(A[i]);
        }

        tot += (pop(fours) << 2)
                + (pop(twos) << 1)
                + pop(ones)
                + (tot8 << 3);

        return tot;
    }

    /**
     * Returns the popcount or cardinality of the two sets after an
     * intersection. Neither array is modified.
     */
    public static long pop_intersect(long A[], long B[], int wordOffset, int numWords) {
        // generated from pop_array via sed 's/A\[\([^]]*\)\]/\(A[\1] \& B[\1]\)/g'
        int n = wordOffset + numWords;
        long tot = 0, tot8 = 0;
        long ones = 0, twos = 0, fours = 0;

        int i;
        for (i = wordOffset; i <= n - 8; i += 8) {
            long twosA, twosB, foursA, foursB, eights;

            // CSA(twosA, ones, ones, (A[i] & B[i]), (A[i+1] & B[i+1]))
            {
                long b = (A[i] & B[i]), c = (A[i + 1] & B[i + 1]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, (A[i+2] & B[i+2]), (A[i+3] & B[i+3]))
            {
                long b = (A[i + 2] & B[i + 2]), c = (A[i + 3] & B[i + 3]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursA, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            //CSA(twosA, ones, ones, (A[i+4] & B[i+4]), (A[i+5] & B[i+5]))
            {
                long b = (A[i + 4] & B[i + 4]), c = (A[i + 5] & B[i + 5]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, (A[i+6] & B[i+6]), (A[i+7] & B[i+7]))
            {
                long b = (A[i + 6] & B[i + 6]), c = (A[i + 7] & B[i + 7]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursB, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursB = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }

            //CSA(eights, fours, fours, foursA, foursB)
            {
                long u = fours ^ foursA;
                eights = (fours & foursA) | (u & foursB);
                fours = u ^ foursB;
            }
            tot8 += pop(eights);
        }


        if (i <= n - 4) {
            long twosA, twosB, foursA, eights;
            {
                long b = (A[i] & B[i]), c = (A[i + 1] & B[i + 1]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long b = (A[i + 2] & B[i + 2]), c = (A[i + 3] & B[i + 3]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 4;
        }

        if (i <= n - 2) {
            long b = (A[i] & B[i]), c = (A[i + 1] & B[i + 1]);
            long u = ones ^ b;
            long twosA = (ones & b) | (u & c);
            ones = u ^ c;

            long foursA = twos & twosA;
            twos = twos ^ twosA;

            long eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 2;
        }

        if (i < n) {
            tot += pop((A[i] & B[i]));
        }

        tot += (pop(fours) << 2)
                + (pop(twos) << 1)
                + pop(ones)
                + (tot8 << 3);

        return tot;
    }

    /**
     * Returns the popcount or cardinality of the union of two sets. Neither
     * array is modified.
     */
    public static long pop_union(long A[], long B[], int wordOffset, int numWords) {
        // generated from pop_array via sed 's/A\[\([^]]*\)\]/\(A[\1] \| B[\1]\)/g'
        int n = wordOffset + numWords;
        long tot = 0, tot8 = 0;
        long ones = 0, twos = 0, fours = 0;

        int i;
        for (i = wordOffset; i <= n - 8; i += 8) {
            /**
             * * C macro from Hacker's Delight #define CSA(h,l, a,b,c) \
             * {unsigned u = a ^ b; unsigned v = c; \ h = (a & b) | (u & v); l =
             * u ^ v;} *
             */
            long twosA, twosB, foursA, foursB, eights;

            // CSA(twosA, ones, ones, (A[i] | B[i]), (A[i+1] | B[i+1]))
            {
                long b = (A[i] | B[i]), c = (A[i + 1] | B[i + 1]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, (A[i+2] | B[i+2]), (A[i+3] | B[i+3]))
            {
                long b = (A[i + 2] | B[i + 2]), c = (A[i + 3] | B[i + 3]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursA, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            //CSA(twosA, ones, ones, (A[i+4] | B[i+4]), (A[i+5] | B[i+5]))
            {
                long b = (A[i + 4] | B[i + 4]), c = (A[i + 5] | B[i + 5]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, (A[i+6] | B[i+6]), (A[i+7] | B[i+7]))
            {
                long b = (A[i + 6] | B[i + 6]), c = (A[i + 7] | B[i + 7]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursB, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursB = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }

            //CSA(eights, fours, fours, foursA, foursB)
            {
                long u = fours ^ foursA;
                eights = (fours & foursA) | (u & foursB);
                fours = u ^ foursB;
            }
            tot8 += pop(eights);
        }


        if (i <= n - 4) {
            long twosA, twosB, foursA, eights;
            {
                long b = (A[i] | B[i]), c = (A[i + 1] | B[i + 1]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long b = (A[i + 2] | B[i + 2]), c = (A[i + 3] | B[i + 3]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 4;
        }

        if (i <= n - 2) {
            long b = (A[i] | B[i]), c = (A[i + 1] | B[i + 1]);
            long u = ones ^ b;
            long twosA = (ones & b) | (u & c);
            ones = u ^ c;

            long foursA = twos & twosA;
            twos = twos ^ twosA;

            long eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 2;
        }

        if (i < n) {
            tot += pop((A[i] | B[i]));
        }

        tot += (pop(fours) << 2)
                + (pop(twos) << 1)
                + pop(ones)
                + (tot8 << 3);

        return tot;
    }

    /**
     * Returns the popcount or cardinality of A & ~B Neither array is modified.
     */
    public static long pop_andnot(long A[], long B[], int wordOffset, int numWords) {
        // generated from pop_array via sed 's/A\[\([^]]*\)\]/\(A[\1] \& ~B[\1]\)/g'
        int n = wordOffset + numWords;
        long tot = 0, tot8 = 0;
        long ones = 0, twos = 0, fours = 0;

        int i;
        for (i = wordOffset; i <= n - 8; i += 8) {
            /**
             * * C macro from Hacker's Delight #define CSA(h,l, a,b,c) \
             * {unsigned u = a ^ b; unsigned v = c; \ h = (a & b) | (u & v); l =
             * u ^ v;} *
             */
            long twosA, twosB, foursA, foursB, eights;

            // CSA(twosA, ones, ones, (A[i] & ~B[i]), (A[i+1] & ~B[i+1]))
            {
                long b = (A[i] & ~B[i]), c = (A[i + 1] & ~B[i + 1]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, (A[i+2] & ~B[i+2]), (A[i+3] & ~B[i+3]))
            {
                long b = (A[i + 2] & ~B[i + 2]), c = (A[i + 3] & ~B[i + 3]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursA, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            //CSA(twosA, ones, ones, (A[i+4] & ~B[i+4]), (A[i+5] & ~B[i+5]))
            {
                long b = (A[i + 4] & ~B[i + 4]), c = (A[i + 5] & ~B[i + 5]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, (A[i+6] & ~B[i+6]), (A[i+7] & ~B[i+7]))
            {
                long b = (A[i + 6] & ~B[i + 6]), c = (A[i + 7] & ~B[i + 7]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursB, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursB = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }

            //CSA(eights, fours, fours, foursA, foursB)
            {
                long u = fours ^ foursA;
                eights = (fours & foursA) | (u & foursB);
                fours = u ^ foursB;
            }
            tot8 += pop(eights);
        }


        if (i <= n - 4) {
            long twosA, twosB, foursA, eights;
            {
                long b = (A[i] & ~B[i]), c = (A[i + 1] & ~B[i + 1]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long b = (A[i + 2] & ~B[i + 2]), c = (A[i + 3] & ~B[i + 3]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 4;
        }

        if (i <= n - 2) {
            long b = (A[i] & ~B[i]), c = (A[i + 1] & ~B[i + 1]);
            long u = ones ^ b;
            long twosA = (ones & b) | (u & c);
            ones = u ^ c;

            long foursA = twos & twosA;
            twos = twos ^ twosA;

            long eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 2;
        }

        if (i < n) {
            tot += pop((A[i] & ~B[i]));
        }

        tot += (pop(fours) << 2)
                + (pop(twos) << 1)
                + pop(ones)
                + (tot8 << 3);

        return tot;
    }

    public static long pop_xor(long A[], long B[], int wordOffset, int numWords) {
        int n = wordOffset + numWords;
        long tot = 0, tot8 = 0;
        long ones = 0, twos = 0, fours = 0;

        int i;
        for (i = wordOffset; i <= n - 8; i += 8) {
            /**
             * * C macro from Hacker's Delight #define CSA(h,l, a,b,c) \
             * {unsigned u = a ^ b; unsigned v = c; \ h = (a & b) | (u & v); l =
             * u ^ v;} *
             */
            long twosA, twosB, foursA, foursB, eights;

            // CSA(twosA, ones, ones, (A[i] ^ B[i]), (A[i+1] ^ B[i+1]))
            {
                long b = (A[i] ^ B[i]), c = (A[i + 1] ^ B[i + 1]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, (A[i+2] ^ B[i+2]), (A[i+3] ^ B[i+3]))
            {
                long b = (A[i + 2] ^ B[i + 2]), c = (A[i + 3] ^ B[i + 3]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursA, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            //CSA(twosA, ones, ones, (A[i+4] ^ B[i+4]), (A[i+5] ^ B[i+5]))
            {
                long b = (A[i + 4] ^ B[i + 4]), c = (A[i + 5] ^ B[i + 5]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            // CSA(twosB, ones, ones, (A[i+6] ^ B[i+6]), (A[i+7] ^ B[i+7]))
            {
                long b = (A[i + 6] ^ B[i + 6]), c = (A[i + 7] ^ B[i + 7]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            //CSA(foursB, twos, twos, twosA, twosB)
            {
                long u = twos ^ twosA;
                foursB = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }

            //CSA(eights, fours, fours, foursA, foursB)
            {
                long u = fours ^ foursA;
                eights = (fours & foursA) | (u & foursB);
                fours = u ^ foursB;
            }
            tot8 += pop(eights);
        }


        if (i <= n - 4) {
            long twosA, twosB, foursA, eights;
            {
                long b = (A[i] ^ B[i]), c = (A[i + 1] ^ B[i + 1]);
                long u = ones ^ b;
                twosA = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long b = (A[i + 2] ^ B[i + 2]), c = (A[i + 3] ^ B[i + 3]);
                long u = ones ^ b;
                twosB = (ones & b) | (u & c);
                ones = u ^ c;
            }
            {
                long u = twos ^ twosA;
                foursA = (twos & twosA) | (u & twosB);
                twos = u ^ twosB;
            }
            eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 4;
        }

        if (i <= n - 2) {
            long b = (A[i] ^ B[i]), c = (A[i + 1] ^ B[i + 1]);
            long u = ones ^ b;
            long twosA = (ones & b) | (u & c);
            ones = u ^ c;

            long foursA = twos & twosA;
            twos = twos ^ twosA;

            long eights = fours & foursA;
            fours = fours ^ foursA;

            tot8 += pop(eights);
            i += 2;
        }

        if (i < n) {
            tot += pop((A[i] ^ B[i]));
        }

        tot += (pop(fours) << 2)
                + (pop(twos) << 1)
                + pop(ones)
                + (tot8 << 3);

        return tot;
    }

    /* python code to generate ntzTable
     def ntz(val):
     if val==0: return 8
     i=0
     while (val&0x01)==0:
     i = i+1
     val >>= 1
     return i
     print ','.join([ str(ntz(i)) for i in range(256) ])
     ***/
    /**
     * table of number of trailing zeros in a byte
     */
    public static final byte[] ntzTable = {8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};

    /**
     * Returns number of trailing zeros in a 64 bit long value.
     */
    public static int ntz(long val) {
        // A full binary search to determine the low byte was slower than
        // a linear search for nextSetBit().  This is most likely because
        // the implementation of nextSetBit() shifts bits to the right, increasing
        // the probability that the first non-zero byte is in the rhs.
        //
        // This implementation does a single binary search at the top level only
        // so that all other bit shifting can be done on ints instead of longs to
        // remain friendly to 32 bit architectures.  In addition, the case of a
        // non-zero first byte is checked for first because it is the most common
        // in dense bit arrays.

        int lower = (int) val;
        int lowByte = lower & 0xff;
        if (lowByte != 0) {
            return ntzTable[lowByte];
        }

        if (lower != 0) {
            lowByte = (lower >>> 8) & 0xff;
            if (lowByte != 0) {
                return ntzTable[lowByte] + 8;
            }
            lowByte = (lower >>> 16) & 0xff;
            if (lowByte != 0) {
                return ntzTable[lowByte] + 16;
            }
            // no need to mask off low byte for the last byte in the 32 bit word
            // no need to check for zero on the last byte either.
            return ntzTable[lower >>> 24] + 24;
        } else {
            // grab upper 32 bits
            int upper = (int) (val >> 32);
            lowByte = upper & 0xff;
            if (lowByte != 0) {
                return ntzTable[lowByte] + 32;
            }
            lowByte = (upper >>> 8) & 0xff;
            if (lowByte != 0) {
                return ntzTable[lowByte] + 40;
            }
            lowByte = (upper >>> 16) & 0xff;
            if (lowByte != 0) {
                return ntzTable[lowByte] + 48;
            }
            // no need to mask off low byte for the last byte in the 32 bit word
            // no need to check for zero on the last byte either.
            return ntzTable[upper >>> 24] + 56;
        }
    }

    /**
     * Returns number of trailing zeros in a 32 bit int value.
     */
    public static int ntz(int val) {
        // This implementation does a single binary search at the top level only.
        // In addition, the case of a non-zero first byte is checked for first
        // because it is the most common in dense bit arrays.

        int lowByte = val & 0xff;
        if (lowByte != 0) {
            return ntzTable[lowByte];
        }
        lowByte = (val >>> 8) & 0xff;
        if (lowByte != 0) {
            return ntzTable[lowByte] + 8;
        }
        lowByte = (val >>> 16) & 0xff;
        if (lowByte != 0) {
            return ntzTable[lowByte] + 16;
        }
        // no need to mask off low byte for the last byte.
        // no need to check for zero on the last byte either.
        return ntzTable[val >>> 24] + 24;
    }

    /**
     * returns 0 based index of first set bit (only works for x!=0) 
This * is an alternate implementation of ntz() */ public static int ntz2(long x) { int n = 0; int y = (int) x; if (y == 0) { n += 32; y = (int) (x >>> 32); } // the only 64 bit shift necessary if ((y & 0x0000FFFF) == 0) { n += 16; y >>>= 16; } if ((y & 0x000000FF) == 0) { n += 8; y >>>= 8; } return (ntzTable[y & 0xff]) + n; } /** * returns 0 based index of first set bit
This is an alternate * implementation of ntz() */ public static int ntz3(long x) { // another implementation taken from Hackers Delight, extended to 64 bits // and converted to Java. // Many 32 bit ntz algorithms are at http://www.hackersdelight.org/HDcode/ntz.cc int n = 1; // do the first step as a long, all others as ints. int y = (int) x; if (y == 0) { n += 32; y = (int) (x >>> 32); } if ((y & 0x0000FFFF) == 0) { n += 16; y >>>= 16; } if ((y & 0x000000FF) == 0) { n += 8; y >>>= 8; } if ((y & 0x0000000F) == 0) { n += 4; y >>>= 4; } if ((y & 0x00000003) == 0) { n += 2; y >>>= 2; } return n - (y & 1); } /** * returns true if v is a power of two or zero */ public static boolean isPowerOfTwo(int v) { return ((v & (v - 1)) == 0); } /** * returns true if v is a power of two or zero */ public static boolean isPowerOfTwo(long v) { return ((v & (v - 1)) == 0); } /** * returns the next highest power of two, or the current value if it's * already a power of two or zero */ public static int nextHighestPowerOfTwo(int v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } /** * returns the next highest power of two, or the current value if it's * already a power of two or zero */ public static long nextHighestPowerOfTwo(long v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v |= v >> 32; v++; return v; } /** * This converts taxa optimized Bit Sets to site optimized Bit Sets and vice * versa. * * @param matrix matrix to convert * @param numDataRows number data rows (i.e. max num alleles + rare?) * @param numRows number rows (i.e. number taxa) * @param numColumns number columns (i.e. number sites) * * @return transposed Bit Sets */ public static BitSet[][] transpose(BitSet[][] matrix, int numDataRows, int numRows, int numColumns, ProgressListener listener) { if (matrix.length != numDataRows) { throw new IllegalArgumentException("BitUtil: transpose: number of data rows: " + numDataRows + " should equal number rows in matrix: " + matrix.length); } if (matrix[0].length != numRows) { throw new IllegalArgumentException("BitUtil: transpose: number of rows: " + numRows + " should equal number rows in matrix: " + matrix[0].length); } if (matrix[0][0].getNumWords() != bits2words(numColumns)) { throw new IllegalArgumentException("BitUtil: transpose: number of words in matrix: " + matrix[0][0].getNumWords() + " should equal number words required by number columns: " + bits2words(numColumns)); } int numResultRows = numColumns; int numTransposeRowWords = bits2words(numRows); int numTransposeColumnWords = bits2words(numColumns); BitSet[][] result = new BitSet[numDataRows][numResultRows]; for (int d = 0; d < numDataRows; d++) { ExecutorService pool = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors()); for (int c = 0; c < numTransposeColumnWords; c++) { int numColumnsToProcess = 64; if (c == numTransposeColumnWords - 1) { numColumnsToProcess = numColumns - ((numTransposeColumnWords - 1) * 64); } pool.execute(new Process64Columns(matrix, numTransposeRowWords, d, numColumnsToProcess, numRows, c, c * 64, result, listener)); } try { pool.shutdown(); if (!pool.awaitTermination(600, TimeUnit.SECONDS)) { throw new IllegalStateException("BitUtil: transpose: processing threads timed out."); } } catch (Exception e) { e.printStackTrace(); throw new IllegalStateException("BitUtil: transpose: processing threads problem."); } } return result; } private static class Process64Columns implements Runnable { private final BitSet[][] myMatrix; private final int myNumTransposeRowWords; private final int myDataRow; private final int myNumColumnsToProcess; private final int myStartingResultRow; private final int myTransposeColumnWord; private final int myNumRows; private final BitSet[][] myResult; private final ProgressListener myListener; public Process64Columns(BitSet[][] matrix, int numTransposeRowWords, int dataRow, int numColumnsToProcess, int numRows, int transposeColumnWord, int startingResultRow, BitSet[][] result, ProgressListener listener) { myMatrix = matrix; myNumTransposeRowWords = numTransposeRowWords; myDataRow = dataRow; myNumColumnsToProcess = numColumnsToProcess; myStartingResultRow = startingResultRow; myTransposeColumnWord = transposeColumnWord; myNumRows = numRows; myResult = result; myListener = listener; } @Override public void run() { long[][] transposeMatrix = new long[myNumTransposeRowWords][64]; int index = 0; for (int r = 0; r < myNumTransposeRowWords; r++) { int numRowsToProcess = 64; if (r == myNumTransposeRowWords - 1) { numRowsToProcess = myNumRows - ((myNumTransposeRowWords - 1) * 64); } for (int x = 0; x < numRowsToProcess; x++) { transposeMatrix[r][x] = myMatrix[myDataRow][index].getBits(myTransposeColumnWord); index++; } transposeMatrix[r] = transpose(transposeMatrix[r]); } int resultRow = myStartingResultRow; for (int x = 0; x < myNumColumnsToProcess; x++) { long[] temp = new long[myNumTransposeRowWords]; for (int r = 0; r < myNumTransposeRowWords; r++) { temp[r] = transposeMatrix[r][x]; } myResult[myDataRow][resultRow++] = new OpenBitSet(temp, myNumTransposeRowWords); } if (myListener != null) { int totalDataRows = myMatrix.length; int totalColumnWords = myMatrix[myDataRow][0].getNumWords(); int numUnits = totalDataRows * totalColumnWords; int currentUnit = (myDataRow * totalColumnWords) + myTransposeColumnWord + 1; int progress = (int) (((double) currentUnit / (double) numUnits) * 100.0); myListener.progress(progress, this); } } } /** * returns the number of 64 bit words it would take to hold numBits */ public static int bits2words(long numBits) { return (int) (((numBits - 1) >>> 6) + 1); } /** * Transposes 64 x 64 bit matrix. The below before and after locations. * 1 2 4 2 * 3 4 3 1 * * @param orig original * * @return transposed matrix */ public static long[] transpose(long[] orig) { long m = 0xFFFFFFFF00000000l; long t; for (int j = 32; j != 0; j = j >> 1, m = m ^ (m >>> j)) { for (int k = 0; k < 64; k = (k + j + 1) & ~j) { t = (orig[k] ^ (orig[k + j] << j)) & m; orig[k] = orig[k] ^ t; orig[k + j] = orig[k + j] ^ (t >>> j); } } return orig; } public static void printBitLong(long A) { System.out.println(toPadString(A)); } public static String toPadString(long A) { String str = Long.toBinaryString(A); StringBuilder builder = new StringBuilder(64); for (int i = 0, n = 64 - str.length(); i < n; i++) { builder.append("0"); } builder.append(str); return builder.toString(); } /** * Returns the bits in the same order that we store them for TASSEL * @param A * @return */ public static String toPadStringLowSiteToHighSite(long A) { return new StringBuffer(toPadString(A)).reverse().toString(); } public static void printBitMatrix(long[] A) { for (int i = 0; i < A.length; i++) { System.out.println(toPadString(A[i])); } } public static String toReadableString(BitSet bitSet) { StringBuilder sb=new StringBuilder(); for (int i=0; i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy