All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.maizegenetics.analysis.association.GenomicSelectionPlugin Maven / Gradle / Ivy

Go to download

TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage disequilibrium.

There is a newer version: 5.2.94
Show newest version
package net.maizegenetics.analysis.association;

import net.maizegenetics.stats.linearmodels.FactorModelEffect;
import net.maizegenetics.dna.snp.ExportUtils;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
import net.maizegenetics.util.OpenBitSet;
import net.maizegenetics.util.TableReportBuilder;
import net.maizegenetics.phenotype.CategoricalAttribute;
import net.maizegenetics.phenotype.NumericAttribute;
import net.maizegenetics.phenotype.Phenotype;
import net.maizegenetics.phenotype.Phenotype.ATTRIBUTE_TYPE;
import net.maizegenetics.phenotype.PhenotypeAttribute;
import net.maizegenetics.phenotype.PhenotypeBuilder;
import net.maizegenetics.phenotype.PhenotypeUtils;
import net.maizegenetics.phenotype.TaxaAttribute;
import net.maizegenetics.plugindef.AbstractPlugin;
import net.maizegenetics.plugindef.DataSet;
import net.maizegenetics.plugindef.Datum;

import org.apache.log4j.Logger;

import javax.swing.*;

import java.awt.*;
import java.net.URL;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

import net.maizegenetics.plugindef.PluginParameter;
import net.maizegenetics.stats.EMMA.EMMAforDoubleMatrix;
import net.maizegenetics.stats.linearmodels.BasicShuffler;
import net.maizegenetics.taxa.TaxaList;
import net.maizegenetics.taxa.TaxaListBuilder;
import net.maizegenetics.taxa.TaxaListUtils;
import net.maizegenetics.taxa.Taxon;
import net.maizegenetics.taxa.distance.DistanceMatrix;
import net.maizegenetics.taxa.distance.DistanceMatrixUtils;
import net.maizegenetics.taxa.distance.WriteDistanceMatrix;

import org.apache.commons.math3.stat.correlation.PearsonsCorrelation;
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;


public class GenomicSelectionPlugin extends AbstractPlugin {

    private static final Logger myLogger = Logger.getLogger(GenomicSelectionPlugin.class);

    private PluginParameter performCrossValidation = new
        PluginParameter.Builder<>("doCV", true, Boolean.class)
            .description("Perform cross-validation: True or False")
            .guiName("Perform cross-validation")
            .build();
    
    private PluginParameter kFolds = new
        PluginParameter.Builder<>("kFolds", 5, Integer.class)
            .description("Number of folds to use for k-fold cross-validation (default = 5)")
            .guiName("Number of folds")
            .dependentOnParameter(performCrossValidation)
            .build();
    
    private PluginParameter nIterations = new
        PluginParameter.Builder<>("nIter", 20, Integer.class)
            .description("Number of iterations when running k-fold cross-validation (default = 20)")
            .guiName("Number of iterations")
            .dependentOnParameter(performCrossValidation)
            .build();
    
    public GenomicSelectionPlugin(Frame parentFrame, boolean isInteractive) {
        super(parentFrame, isInteractive);
    }

    public DataSet processData(DataSet input) {
    	//extract phenotypes
    	List myDataList = input.getDataOfType(Phenotype.class);
    	if (myDataList.size() == 0)
    		throw new IllegalArgumentException("No phenotype selected.");
    	if (myDataList.size() > 1)
    		throw new IllegalArgumentException("Too many phenotypes selected.");
    	Phenotype myPhenotype = (Phenotype) myDataList.get(0).getData();
    	String inputPhenotypeName = myDataList.get(0).getName();

    	//extract kinship matrix
    	myDataList = input.getDataOfType(DistanceMatrix.class);
    	if (myDataList.size() == 0)
    		throw new IllegalArgumentException("No kinship matrix selected.");
    	if (myDataList.size() > 1)
    		throw new IllegalArgumentException("Too many kinship matrices selected.");
    	DistanceMatrix kinship = (DistanceMatrix) myDataList.get(0).getData();

    	//Remove phenos for which no kinship is present
    	TaxaList phenoTaxa = myPhenotype.taxa();
    	TaxaList kinTaxa = kinship.getTaxaList();
    	TaxaList jointTaxa = TaxaListUtils.getCommonTaxa(phenoTaxa,kinTaxa);
    	Phenotype reducedPheno = new PhenotypeBuilder()
    	.fromPhenotype(myPhenotype)
    	.keepTaxa(jointTaxa)
    	.build().get(0);

    	
    	if (performCrossValidation.value()) {
    		return processDataforCrossValidation(reducedPheno, kinship, inputPhenotypeName);
    	} else {
    		return processDataforPrediction(reducedPheno, kinship, inputPhenotypeName);
    	}
    }
    
    public DataSet processDataforPrediction(Phenotype myPhenotype, DistanceMatrix kinshipMatrix, String inputPhenotypeName) {
    	//create a report builder for the results
    	String[] columnHeaders = new String[]{"Trait","Taxon","Observed","Predicted","PEV"};
    	String tableName = "Genomic Prediction Results";
    	TableReportBuilder myReportBuilder = TableReportBuilder.getInstance(tableName, columnHeaders);

    	//run the analysis
        //Remove kinship for which no pheno is present
        List phenoTaxa = myPhenotype.taxaAttribute().allTaxaAsList();
        TaxaList phenoTaxaList = new TaxaListBuilder().addAll(phenoTaxa).build();
        
        DistanceMatrix myKinship = DistanceMatrixUtils.keepTaxa(kinshipMatrix,phenoTaxaList);

        for (PhenotypeAttribute attr : myPhenotype.attributeListOfType(ATTRIBUTE_TYPE.data)) {
            
        	NumericAttribute dataAttribute = (NumericAttribute) attr;
        	String traitname = dataAttribute.name();
            double[] phenotypeData = AssociationUtils.convertFloatArrayToDouble(dataAttribute.floatValues());
            int nObs = phenotypeData.length;
            DoubleMatrix phenotype = DoubleMatrixFactory.DEFAULT.make(nObs, 1, phenotypeData);
            DoubleMatrix fixedEffects = fixedEffectMatrix(myPhenotype);
            
            //Run EMMA using G-BLUP constructor (data, fixed, kinship)
            DoubleMatrix kinship = DoubleMatrixFactory.DEFAULT.make(myKinship.getClonedDistances());
            EMMAforDoubleMatrix runEMMA = new EMMAforDoubleMatrix(phenotype,fixedEffects,kinship);
            runEMMA.setCalculatePEV(true);
            runEMMA.solve();
            runEMMA.calculateBlupsPredicted();
            
            //report results
            //{"Trait","Taxon","Observed","Predicted","PEV"}
            TaxaAttribute myTaxa = myPhenotype.taxaAttribute();
            DoubleMatrix predictedValues = runEMMA.getPred();
            DoubleMatrix pevs = runEMMA.getPev();
            for (int obs = 0; obs < nObs; obs++) {
            	Object[] reportRow = new Object[]{
            			traitname, 
            			myTaxa.taxon(obs).getName(), 
            			phenotype.get(obs,  0),
            			predictedValues.get(obs, 0),
            			pevs.get(obs, 0)};
            	myReportBuilder.add(reportRow);
            }
            
        }
        
        String datumName = "Prediction_" + inputPhenotypeName;
        String comment = "Genomic Prediction for " + inputPhenotypeName;
        DataSet myReportSet = new DataSet(new Datum(datumName, myReportBuilder.build(), comment), this);
        return myReportSet;
    }
    
    public DataSet processDataforCrossValidation(Phenotype reducedPheno, DistanceMatrix kinshipOriginal, String inputPhenotypeName) {
    	DoubleMatrix phenotype;
    	DoubleMatrix fixedEffects;

    	//create a report builder for results
    	String[] columnHeaders = new String[]{"Trait","Iteration","Fold","Accuracy"};
    	String tableName = "Genomic Prediction Accuracy";
    	TableReportBuilder myReportBuilder = TableReportBuilder.getInstance(tableName, columnHeaders);
    	ArrayList commentList = new ArrayList();
    	
        //create an index that contains all attributes except the data attributes
        //the last index value will be unassigned and will take the value of each data attribute one at a time
        int[] taxaAttrIndex = reducedPheno.attributeIndicesOfType(ATTRIBUTE_TYPE.taxa);
        int[] dataAttrIndex = reducedPheno.attributeIndicesOfType(ATTRIBUTE_TYPE.data);
        int[] factorAttrIndex = reducedPheno.attributeIndicesOfType(ATTRIBUTE_TYPE.factor);
        int[] covariateAttrIndex = reducedPheno.attributeIndicesOfType(ATTRIBUTE_TYPE.covariate);
        int nAttributes = taxaAttrIndex.length + factorAttrIndex.length + covariateAttrIndex.length + 1;
        int[] singlePhenotypeIndex = new int[nAttributes];
        int counter = 0;
        for (int addIndex : taxaAttrIndex) singlePhenotypeIndex[counter++] = addIndex;
        for (int addIndex : factorAttrIndex) singlePhenotypeIndex[counter++] = addIndex;
        for (int addIndex : covariateAttrIndex) singlePhenotypeIndex[counter++] = addIndex;
        
        int numberOfIterations = nIterations.value();
        int numberOfFolds = kFolds.value();
        int numberOfTraits = dataAttrIndex.length;
        int numberOfComputes = numberOfIterations * numberOfFolds * numberOfTraits;
        int updateProgressValue = Math.max(1, numberOfComputes / 100);
        int computeCount = 0;
        
        for (int singleDataIndex : dataAttrIndex) {
        	singlePhenotypeIndex[nAttributes - 1] = singleDataIndex;
        	Phenotype singlePhenotype = new PhenotypeBuilder().fromPhenotype(reducedPheno)
        			.keepAttributes(singlePhenotypeIndex).removeMissingObservations().build().get(0);
            
        	NumericAttribute dataAttribute = (NumericAttribute) singlePhenotype.attributeListOfType(ATTRIBUTE_TYPE.data).get(0);
        	String traitname = dataAttribute.name();
        	
            //Remove kinship for which no pheno is present
            TaxaList phenoTaxa = singlePhenotype.taxa();
            TaxaList kinTaxa = kinshipOriginal.getTaxaList();
            TaxaList jointTaxa = TaxaListUtils.getCommonTaxa(phenoTaxa,kinTaxa);
            
            DistanceMatrix myKinship = DistanceMatrixUtils.keepTaxa(kinshipOriginal,jointTaxa);

            //get phenotype data
            double[] phenotypeData = AssociationUtils.convertFloatArrayToDouble(dataAttribute.floatValues());
            int nObs = phenotypeData.length;
            phenotype = DoubleMatrixFactory.DEFAULT.make(nObs, 1, phenotypeData);

            //debug export -- COMMENT OUT after debugging
//            PhenotypeUtils.write(singlePhenotype, String.format("/Users/pbradbury/temp/phenotype_%s_.txt", traitname));
//            WriteDistanceMatrix.saveDelimitedDistanceMatrix(myKinship, String.format("/Users/pbradbury/temp/kinship_%s_.txt", traitname));
            
            fixedEffects = fixedEffectMatrix(singlePhenotype);
            DoubleMatrix kinship = DoubleMatrixFactory.DEFAULT.make(myKinship.getClonedDistances());
            
            //Create folds for cross-validation
            //this division automatically rounds down. feature of java, tested to confirm.
            int foldSize = nObs/kFolds.value();
            int[] seq = IntStream.range(0,nObs).toArray();
            BasicShuffler.reset();//seed is 111 by default within BasicShuffler. This line returns to beginning of that sequence.
            double[] rValues = new double[numberOfIterations*numberOfFolds];
            int rValueIndex = 0;
            //Iterate through number of iterations specified.
            for (int iter = 0 ; iter < numberOfIterations ; iter++){
                BasicShuffler.shuffle(seq);
                //Iterate through folds for cross-validation
                int startFold = 0;
                for (int fold = 0 ; fold < numberOfFolds ; fold++){
                    //Set prediction fold to missing
                    DoubleMatrix phenoTraining = phenotype.copy();
                    int endFold = startFold + foldSize;
                    if (fold == numberOfFolds - 1) endFold = nObs;
                    for (int ndx = startFold ; ndx < endFold ; ndx++){
                        phenoTraining.set(seq[ndx],0,Double.NaN);
                    }
                    
                    //debug -- export masked phenotypes for validation -- COMMENT OUT after testing
//                    PhenotypeUtils.write(singlePhenotype, String.format("/Users/pbradbury/temp/masked_phenotype_%d:%d_%s_.txt", iter, fold, dataAttribute.name()));
                    
                    //Run EMMA using G-BLUP constructor (data, fixed, kinship)
                    EMMAforDoubleMatrix runEMMA = new EMMAforDoubleMatrix(phenoTraining,fixedEffects,kinship);
                    runEMMA.solve();
                    runEMMA.calculateBlupsPredicted();
                    double[] predictions = runEMMA.getPred().to1DArray();
//                    double[] blups = runEMMA.getBlup().to1DArray(); //debug
                    int testSize = endFold - startFold;
                    double[] testPredictions = new double[testSize];
                    double[] testObserved = new double[testSize];
//                    double[] testBlups = new double[testSize]; //debug
                    for (int ndx = 0 ; ndx < testSize ; ndx++){
                        int seqIndex = seq[ndx + startFold];
                        testPredictions[ndx] = predictions[seqIndex];
                        testObserved[ndx] = phenotype.get(seqIndex,0);
//                        testBlups[ndx] = blups[seqIndex]; //debug
                    }
                    PearsonsCorrelation Pearsons = new PearsonsCorrelation();
                    double rval = Pearsons.correlation(testPredictions,testObserved);
//                    double blupRval = Pearsons.correlation(testBlups,testObserved);  //debug
                    rValues[rValueIndex++] = rval;
                    myReportBuilder.add(new Object[]{traitname, new Integer(iter), new Integer(fold), new Double(rval)});
                    startFold = endFold;
                    computeCount++;
                    if (computeCount % updateProgressValue == 0) fireProgress(computeCount/updateProgressValue);
                }
            }
            
            DescriptiveStatistics stats = new DescriptiveStatistics(rValues);
            double meanR = stats.getMean();
            double varR = stats.getVariance();
            double sdR = Math.sqrt(varR/rValues.length);
            
            System.out.printf("For phenotype %s\n",dataAttribute.name());
            System.out.printf("Mean from genomic prediction = %1.4f\n",meanR);
            System.out.printf("Standard deviation of mean from genomic prediction = %1.8f\n",sdR);
            
            commentList.add(" ");
            commentList.add(String.format("For phenotype %s",dataAttribute.name()));
            commentList.add(String.format("Mean from genomic prediction = %1.4f",meanR));
            commentList.add(String.format("Standard deviation of mean from genomic prediction = %1.8f",sdR));

        }
        
       
        String comment = "Genomic Prediction Accuracy Summary:\n";
        for (String commentLine : commentList) {
        	comment += commentLine + "\n";
        }
        DataSet returnData = new DataSet(new Datum("Accuracy_" + inputPhenotypeName,myReportBuilder.build(),comment), this);
        
        fireProgress(100);
        return returnData;
    }

    private DoubleMatrix fixedEffectMatrix(Phenotype aPhenotype) {
        List factorAttributeList = aPhenotype.attributeListOfType(ATTRIBUTE_TYPE.factor);
        List covariateAttributeList = aPhenotype.attributeListOfType(ATTRIBUTE_TYPE.covariate);

        int numberOfFactors = factorAttributeList.size();
        int numberOfCovariates = covariateAttributeList.size();
        int numberOfEffects = numberOfFactors + numberOfCovariates + 1;
        int nObs = aPhenotype.numberOfObservations();
        DoubleMatrix fixedEffects;
        if (numberOfEffects > 1) {
            DoubleMatrix[][] effects = new DoubleMatrix[1][numberOfEffects];
            effects[0][0] = DoubleMatrixFactory.DEFAULT.make(nObs, 1, 1);
            for (int i = 0; i < numberOfFactors; i++) {
            	CategoricalAttribute fa = (CategoricalAttribute) factorAttributeList.get(i);
                FactorModelEffect fme = new FactorModelEffect(fa.allIntValues(), true);
                effects[0][i + 1] = fme.getX();
            }
            for (int i = 0; i < numberOfCovariates; i++) {
            	NumericAttribute na = (NumericAttribute) covariateAttributeList.get(i);
            	double[] values = AssociationUtils.convertFloatArrayToDouble(na.floatValues());
                effects[0][i + numberOfFactors + 1] = DoubleMatrixFactory.DEFAULT.make(nObs, 1, values);
            }
            fixedEffects = DoubleMatrixFactory.DEFAULT.compose(effects);
        } else {
            fixedEffects = DoubleMatrixFactory.DEFAULT.make(nObs, 1, 1);
        }
        return fixedEffects;
    }
    
    @Override
    public ImageIcon getIcon() {
        URL imageURL = GenomicSelectionPlugin.class.getResource("/net/maizegenetics/analysis/images/LinearAssociation.gif");
        if (imageURL == null) {
            return null;
        } else {
            return new ImageIcon(imageURL);
        }
    }

    @Override
    public String getButtonName() {
        return "Genomic Selection";
    }

    @Override
    public String getToolTipText() {
        return "Predict Phenotypes using G-BLUP for Genomic Selection";
    }

    @Override
    public String pluginDescription() {
        return "Predicts phenotypes using G-BLUP for genomic selection using a user-inputted kinship matrix and phenotype(s).";
    }  

    @Override
	public String getCitation() {
		return "C Diepenbrock, P Bradbury (2015) First Annual Tassel Hackathon";
	}

    
    // The following getters and setters were auto-generated.
    // Please use this method to re-generate.
    //
    // public static void main(String[] args) {
    //     GeneratePluginCode.generate(GenomicSelectionPlugin.class);
    // }

	/**
     * Convenience method to run plugin with one return object.
     * @param input
     */
    public DataSet runPlugin(DataSet input) {
        return (DataSet) performFunction(input).getData(0).getData();
    }

    /**
     * Perform cross-validation: True or False
     *
     * @return Perform cross-validation
     */
    public Boolean performCrossValidation() {
        return performCrossValidation.value();
    }

    /**
     * Set Perform cross-validation. Perform cross-validation:
     * True or False
     *
     * @param value Perform cross-validation
     *
     * @return this plugin
     */
    public GenomicSelectionPlugin performCrossValidation(Boolean value) {
        performCrossValidation = new PluginParameter<>(performCrossValidation, value);
        return this;
    }

    /**
     * Number of folds to use for k-fold cross-validation
     * (default = 5)
     *
     * @return Number of folds
     */
    public Integer kFolds() {
        return kFolds.value();
    }

    /**
     * Set Number of folds. Number of folds to use for k-fold
     * cross-validation (default = 5)
     *
     * @param value Number of folds
     *
     * @return this plugin
     */
    public GenomicSelectionPlugin kFolds(Integer value) {
        kFolds = new PluginParameter<>(kFolds, value);
        return this;
    }

    /**
     * Number of iterations when running k-fold cross-validation
     * (default = 20)
     *
     * @return Number of iterations
     */
    public Integer nIterations() {
        return nIterations.value();
    }

    /**
     * Set Number of iterations. Number of iterations when
     * running k-fold cross-validation (default = 20)
     *
     * @param value Number of iterations
     *
     * @return this plugin
     */
    public GenomicSelectionPlugin nIterations(Integer value) {
        nIterations = new PluginParameter<>(nIterations, value);
        return this;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy