net.maizegenetics.analysis.association.RegRidgeEmmaDoubleMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.association;
import net.maizegenetics.stats.EMMA.EMMAforDoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.*;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory.FactoryType;
public class RegRidgeEmmaDoubleMatrix {
private double[] GEBVs;
private double[] mrkEsts;
private DoubleMatrix GEBVsDM;
private DoubleMatrix mrkEstsDM;
private DoubleMatrix pheno;
private boolean[] phenoMissing;
private DoubleMatrix fixed;
private DoubleMatrix geno;
private int nLines;
private int nObs;
private DoubleMatrix kin = null;
/** Constructor using native double arrays. Need to specify DoubleMatrix FactoryType
* @param phenotype; column matrix of phenotype values. Missing phenotype are coded as NaN. GEBVs are calculate for all lines including missing.
* @param fixedEffects; 2D matrix of fixed effects; must not be singular
* @param genotypes; matrix of genotypes coded -1, 0, 1. Missing Genotypes as NaN
* @param type; Tassel DoubleMatrix Type to use
*/
public RegRidgeEmmaDoubleMatrix(double[] phenotype, double[][] fixedEffects, double[][] genotypes, FactoryType type){
DoubleMatrixFactory MF = new DoubleMatrixFactory(type);
pheno = MF.make(phenotype.length, 1, phenotype);
fixed = MF.make(fixedEffects);
geno = MF.make(genotypes);
phenoMissing = this.determineMissingPhenotypes();
}
/** Constructor using Tassel DoubleMatrix.
* @param phenotype; column matrix of phenotype values. Missing phenotype are coded as NaN. GEBVs are calculate for all lines including missing.
* @param fixedEffects; 2D matrix of fixed effects; must not be singular
* @param genotypes; matrix of genotypes coded -1, 0, 1. Missing Genotypes as NaN
*/
public RegRidgeEmmaDoubleMatrix(DoubleMatrix phenotype, DoubleMatrix fixedEffects, DoubleMatrix genotypes){
pheno = phenotype;
fixed = fixedEffects;
geno = genotypes;
phenoMissing = this.determineMissingPhenotypes();
}
/** Constructor using Tassel DoubleMatrix. Use when kinship matrix from markers has already been calculated (XXt).
* @param phenotype; column matrix of phenotype values. Missing phenotype are coded as NaN. GEBVs are calculate for all lines including missing.
* @param fixedEffects; 2D matrix of fixed effects; must not be singular
* @param genotypes; matrix of genotypes coded -1, 0, 1. Missing Genotypes as NaN
* @param kinship; kinship matrix (XXt) calculated from marker matrix (X)
*/
public RegRidgeEmmaDoubleMatrix(DoubleMatrix phenotype, DoubleMatrix fixedEffects, DoubleMatrix genotypes, DoubleMatrix kinship){
pheno = phenotype;
fixed = fixedEffects;
geno = genotypes;
kin = kinship;
phenoMissing = this.determineMissingPhenotypes();
}
/**
* Solve the mixed model for line GEBVs and marker estimates
*/
public void solve() {
double start = System.currentTimeMillis()/1000;
int notMissing = 0;
for (boolean b : phenoMissing) if (!b) notMissing++;
int[] nmIndex = new int[notMissing];
int count = 0;
for (int i = 0; i < phenoMissing.length; i++) {
if (!phenoMissing[i]) {nmIndex[count] = i; count++;}
}
DoubleMatrix nmPheno = pheno.getSelection(nmIndex, null);
DoubleMatrix nmFixed = fixed.getSelection(nmIndex, null);
nLines = pheno.numberOfRows();
nObs = nmPheno.numberOfRows();
this.replaceNaNwithMean();
DoubleMatrix nmGeno = geno.getSelection(nmIndex, null);
//calculate marker based kinship
if (kin == null){kin = geno.mult(geno, false, true);}
DoubleMatrix nmKin = kin.getSelection(nmIndex, nmIndex);
// use EMMA to solve mixed model
EMMAforDoubleMatrix lm = new EMMAforDoubleMatrix(nmPheno, nmFixed, nmKin, 0);
lm.solve();
double delta = lm.getDelta();
System.out.println("Delta: " + delta);
// solve mixed model for marker BLUPs
DoubleMatrix aXZ = nmFixed.concatenate(nmGeno, false);
int nFixed = nmFixed.numberOfColumns();
int nRandom = nmGeno.numberOfColumns();
DoubleMatrix aCoefMat = aXZ.crossproduct();
for (int i=nFixed; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy