All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.maizegenetics.analysis.distance.HMatrixPlugin Maven / Gradle / Ivy

Go to download

TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage disequilibrium.

There is a newer version: 5.2.94
Show newest version
/*
 *  HMatrixPlugin
 *
 *  Created on Oct 23, 2015
 */
package net.maizegenetics.analysis.distance;

import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
import net.maizegenetics.matrixalgebra.decomposition.EigenvalueDecomposition;
import net.maizegenetics.plugindef.AbstractPlugin;
import net.maizegenetics.plugindef.DataSet;
import net.maizegenetics.plugindef.Datum;
import net.maizegenetics.plugindef.PluginParameter;
import net.maizegenetics.taxa.TaxaListBuilder;
import net.maizegenetics.taxa.Taxon;
import net.maizegenetics.taxa.distance.DistanceMatrix;

import javax.swing.*;
import java.awt.*;
import java.net.URL;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;

/**
 * @author Josh Lamos-Sweeney
 * @author Yaw Nti-Addae
 * @author Kelly Robbins
 * @author Terry Casstevens
 */
public class HMatrixPlugin extends AbstractPlugin {

    private PluginParameter myAMatrix = new PluginParameter.Builder<>("pedigreeMatrix", null, DistanceMatrix.class)
            .description("Pedigree Matrix (A Matrix)")
            .required(true)
            .distanceMatrix()
            .build();

    private PluginParameter myGMatrix = new PluginParameter.Builder<>("kinshipMatrix", null, DistanceMatrix.class)
            .description("Kinship Matrix (G Matrix)")
            .required(true)
            .distanceMatrix()
            .build();

    private PluginParameter myWeight = new PluginParameter.Builder<>("weight", 1.0, Double.class)
            .description("Weight")
            .build();

    public HMatrixPlugin(Frame parentFrame, boolean isInteractive) {
        super(parentFrame, isInteractive);
    }

    @Override
    public DataSet processData(DataSet input) {

        List result = new ArrayList<>();

        DoubleMatrix aDoubleMatrix = DoubleMatrixFactory.DEFAULT.make(aMatrix());
        aDoubleMatrix.invert();
        DistanceMatrix aInverse = new DistanceMatrix(aDoubleMatrix.toArray(), aMatrix().getTaxaList());

        DistanceMatrix gStarMatrix = generateGStarMatrix(aMatrix(), gMatrix(), weight());
        DoubleMatrix gStarDoubleMatrix = DoubleMatrixFactory.DEFAULT.make(gStarMatrix);
        gStarDoubleMatrix.invert();
        DistanceMatrix gStarInverse = new DistanceMatrix(gStarDoubleMatrix.toArray(), gMatrix().getTaxaList());


        DistanceMatrix matrix = generateCombinedMatrix(aInverse, gStarInverse);
        result.add(new Datum("Combined A and G Matrix", matrix, null));
        result.add(new Datum("A Matrix Inverse", aInverse, null));
        result.add(new Datum("G* Matrix Inverse", gStarInverse, null));

        return new DataSet(result, this);

    }

    /**
     * Pedigree Matrix
     *
     * @return Pedigree Matrix
     */
    public DistanceMatrix aMatrix() {
        return myAMatrix.value();
    }

    /**
     * Set Pedigree Matrix. Pedigree Matrix
     *
     * @param value Pedigree Matrix
     *
     * @return this plugin
     */
    public HMatrixPlugin aMatrix(DistanceMatrix value) {
        myAMatrix = new PluginParameter<>(myAMatrix, value);
        return this;
    }

    /**
     * Kinship Matrix
     *
     * @return Kinship Matrix
     */
    public DistanceMatrix gMatrix() {
        return myGMatrix.value();
    }

    /**
     * Set Kinship Matrix. Kinship Matrix
     *
     * @param value Kinship Matrix
     *
     * @return this plugin
     */
    public HMatrixPlugin gMatrix(DistanceMatrix value) {
        myGMatrix = new PluginParameter<>(myGMatrix, value);
        return this;
    }

    /**
     * Weight
     *
     * @return Weight
     */
    public Double weight() {
        return myWeight.value();
    }

    /**
     * Set Weight. Weight
     *
     * @param value Weight
     *
     * @return this plugin
     */
    public HMatrixPlugin weight(Double value) {
        myWeight = new PluginParameter<>(myWeight, value);
        return this;
    }

    /**
     * Creates the weighted g matrix (g star 22) given the a matrix and g matrix intersections a22 and g22
     *
     * @param aMatrix The entire A matrix, which will be referenced to modify the G matrix to the G* matrix
     * @param gMatrix The entire G matrix to be transformed into a G* matrix
     * @param weight 0.0 to 1.0, the 'Trust' put in the G matrix. When creating
     * the combined matrix, uses inverse G * weight + inverse A * 1-weight
     *
     * @return The combined, weighted G* matrix
     */

    private static DistanceMatrix generateGStarMatrix(DistanceMatrix aMatrix, DistanceMatrix gMatrix, double weight) {
        double[][] doubleA = aMatrix.getDistances();
        double[][] doubleG = gMatrix.getDistances();
        List aTaxa = aMatrix.getTaxaList();
        List gTaxa = gMatrix.getTaxaList();
        int size = gTaxa.size();
        double[][] doubleGStar = new double[size][size];
        for (int i = 0; i < size; i++) {
            int aLocI = aTaxa.indexOf(gTaxa.get(i));
            if (aLocI == -1) { //Because there is no A22 for this taxa, none of its intersections are in A.
                doubleGStar[i] = doubleG[i];
            } else {
                for (int j = 0; j < size; j++) {
                    int aLocJ = aTaxa.indexOf(gTaxa.get(j));
                    if (aLocJ == -1) {
                        doubleGStar[i][j] = doubleG[i][j];
                    } else {
                        doubleGStar[i][j] = (weight * doubleG[i][j]) + ((1.0 - weight) * doubleA[aLocI][aLocJ]);
                    }
                }
            }
        }
        return new DistanceMatrix(doubleGStar, gMatrix.getTaxaList());
    }

    /**
     * Given the inverse of an A matrix (Pedigree Kinship matrix) and a G Matrix
     * (Genetic Kinship Matrix) which contains mostly entries in the A Matrix
     * creates a combined (H) matrix.
     *
     * @param aInverse Inverted Pedigree kinship(A) matrix
     * @param gStarInverse Inverted and weighted kinship(G*) matrix. Should contain mostly Taxa in
     * common with A matrix for best results
     *
     * @return Combined matrix based on aInverse and gInverse
     */
    // Shorthand notation used: A' = A^-1 (A inverse) = A prime
    // a[1,1] is a11 from the research paper
    public static DistanceMatrix generateCombinedMatrix(DistanceMatrix aInverse, DistanceMatrix gStarInverse) {
        List aTaxa = aInverse.getTaxaList();
        List gTaxa = gStarInverse.getTaxaList();

        //Generate Taxa intersections
        List aOnlyTaxa = new LinkedList<>(aTaxa);
        aOnlyTaxa.removeAll(gTaxa);

        List gOnlyTaxa = new LinkedList<>(gTaxa);
        gOnlyTaxa.removeAll(aTaxa);

        List unionTaxa = new LinkedList<>(aTaxa);
        unionTaxa.removeAll(aOnlyTaxa);

        //Entries not in A are added to the end of A as identity.
        //A[1]
        List matrixOrder = new ArrayList<>(aOnlyTaxa);
        matrixOrder.addAll(gOnlyTaxa);
        //A[2]
        matrixOrder.addAll(unionTaxa);

        double[][] aPrime = aInverse.getDistances();
        double[][] gStarPrime = gStarInverse.getDistances();

        int outputSize = aTaxa.size() + gOnlyTaxa.size();
        double[][] hPrime = new double[outputSize][outputSize];

        //Combined Matrix entries for A[1][1] are copied from A matrix
        for (int i = 0; i < aPrime.length; i++) {
            int newI = matrixOrder.indexOf(aTaxa.get(i));
            for (int j = 0; j < aPrime.length; j++) {
                int newJ = matrixOrder.indexOf(aTaxa.get(j));
                hPrime[newI][newJ] = aPrime[i][j];
            }
        }
        //Add Taxa only in the GMatrix to the A Matrix with an identity of 1 and no other values
        for (Taxon gOnly : gOnlyTaxa) {
            int newI = matrixOrder.indexOf(gOnly);
            hPrime[newI][newI] = 1.0;
        }

        //Now that we have a combined matrix of
        //a11 a12
        //a21 a22
        //we can replace a22 with
        //w*g - (1-w)a22
        for (int i = 0; i < gTaxa.size(); i++) {
            int newI = matrixOrder.indexOf(gTaxa.get(i));
            for (int j = 0; j < gTaxa.size(); j++) {
                int newJ = matrixOrder.indexOf(gTaxa.get(j));
                hPrime[newI][newJ] = gStarPrime[i][j];
            }
        }
        TaxaListBuilder builder = new TaxaListBuilder();
        for (Taxon current : matrixOrder) {
            builder.add(current);
        }
        DistanceMatrix hInverse = new DistanceMatrix(hPrime, builder.build());
        return hInverse;
    }

    /**
     * Gets the Eigenvalue Decomposition of a distance matrix. Helpful in
     * determining the optimal weights of a combined matrix.
     *
     * @param input Input matrix
     *
     * @return Eigenvalue Decomposition of the matrix
     */
    private static EigenvalueDecomposition decompose(DistanceMatrix input) {
        return DoubleMatrixFactory.DEFAULT.make(input.getDistances()).getEigenvalueDecomposition();
    }

    @Override
    public ImageIcon getIcon() {
        URL imageURL = HMatrixPlugin.class.getResource("/net/maizegenetics/analysis/images/hmatrix.png");
        if (imageURL == null) {
            return null;
        } else {
            return new ImageIcon(imageURL);
        }
    }

    @Override
    public String getButtonName() {
        return "Combined A and G Relationship Matrix";
    }

    @Override
    public String getToolTipText() {
        return "Create Combined A and G Relationship Matrix (H Matrix)";
    }

    @Override
    public String getCitation() {
        return "Lamos-Sweeney J, Nti-Addae Y, Robbins K, Casstevens T. (Oct. 2015) Second Tassel Hackathon.";
    }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy