net.maizegenetics.analysis.distance.HMatrixPlugin Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
/*
* HMatrixPlugin
*
* Created on Oct 23, 2015
*/
package net.maizegenetics.analysis.distance;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
import net.maizegenetics.matrixalgebra.decomposition.EigenvalueDecomposition;
import net.maizegenetics.plugindef.AbstractPlugin;
import net.maizegenetics.plugindef.DataSet;
import net.maizegenetics.plugindef.Datum;
import net.maizegenetics.plugindef.PluginParameter;
import net.maizegenetics.taxa.TaxaListBuilder;
import net.maizegenetics.taxa.Taxon;
import net.maizegenetics.taxa.distance.DistanceMatrix;
import javax.swing.*;
import java.awt.*;
import java.net.URL;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
/**
* @author Josh Lamos-Sweeney
* @author Yaw Nti-Addae
* @author Kelly Robbins
* @author Terry Casstevens
*/
public class HMatrixPlugin extends AbstractPlugin {
private PluginParameter myAMatrix = new PluginParameter.Builder<>("pedigreeMatrix", null, DistanceMatrix.class)
.description("Pedigree Matrix (A Matrix)")
.required(true)
.distanceMatrix()
.build();
private PluginParameter myGMatrix = new PluginParameter.Builder<>("kinshipMatrix", null, DistanceMatrix.class)
.description("Kinship Matrix (G Matrix)")
.required(true)
.distanceMatrix()
.build();
private PluginParameter myWeight = new PluginParameter.Builder<>("weight", 1.0, Double.class)
.description("Weight")
.build();
public HMatrixPlugin(Frame parentFrame, boolean isInteractive) {
super(parentFrame, isInteractive);
}
@Override
public DataSet processData(DataSet input) {
List result = new ArrayList<>();
DoubleMatrix aDoubleMatrix = DoubleMatrixFactory.DEFAULT.make(aMatrix());
aDoubleMatrix.invert();
DistanceMatrix aInverse = new DistanceMatrix(aDoubleMatrix.toArray(), aMatrix().getTaxaList());
DistanceMatrix gStarMatrix = generateGStarMatrix(aMatrix(), gMatrix(), weight());
DoubleMatrix gStarDoubleMatrix = DoubleMatrixFactory.DEFAULT.make(gStarMatrix);
gStarDoubleMatrix.invert();
DistanceMatrix gStarInverse = new DistanceMatrix(gStarDoubleMatrix.toArray(), gMatrix().getTaxaList());
DistanceMatrix matrix = generateCombinedMatrix(aInverse, gStarInverse);
result.add(new Datum("Combined A and G Matrix", matrix, null));
result.add(new Datum("A Matrix Inverse", aInverse, null));
result.add(new Datum("G* Matrix Inverse", gStarInverse, null));
return new DataSet(result, this);
}
/**
* Pedigree Matrix
*
* @return Pedigree Matrix
*/
public DistanceMatrix aMatrix() {
return myAMatrix.value();
}
/**
* Set Pedigree Matrix. Pedigree Matrix
*
* @param value Pedigree Matrix
*
* @return this plugin
*/
public HMatrixPlugin aMatrix(DistanceMatrix value) {
myAMatrix = new PluginParameter<>(myAMatrix, value);
return this;
}
/**
* Kinship Matrix
*
* @return Kinship Matrix
*/
public DistanceMatrix gMatrix() {
return myGMatrix.value();
}
/**
* Set Kinship Matrix. Kinship Matrix
*
* @param value Kinship Matrix
*
* @return this plugin
*/
public HMatrixPlugin gMatrix(DistanceMatrix value) {
myGMatrix = new PluginParameter<>(myGMatrix, value);
return this;
}
/**
* Weight
*
* @return Weight
*/
public Double weight() {
return myWeight.value();
}
/**
* Set Weight. Weight
*
* @param value Weight
*
* @return this plugin
*/
public HMatrixPlugin weight(Double value) {
myWeight = new PluginParameter<>(myWeight, value);
return this;
}
/**
* Creates the weighted g matrix (g star 22) given the a matrix and g matrix intersections a22 and g22
*
* @param aMatrix The entire A matrix, which will be referenced to modify the G matrix to the G* matrix
* @param gMatrix The entire G matrix to be transformed into a G* matrix
* @param weight 0.0 to 1.0, the 'Trust' put in the G matrix. When creating
* the combined matrix, uses inverse G * weight + inverse A * 1-weight
*
* @return The combined, weighted G* matrix
*/
private static DistanceMatrix generateGStarMatrix(DistanceMatrix aMatrix, DistanceMatrix gMatrix, double weight) {
double[][] doubleA = aMatrix.getDistances();
double[][] doubleG = gMatrix.getDistances();
List aTaxa = aMatrix.getTaxaList();
List gTaxa = gMatrix.getTaxaList();
int size = gTaxa.size();
double[][] doubleGStar = new double[size][size];
for (int i = 0; i < size; i++) {
int aLocI = aTaxa.indexOf(gTaxa.get(i));
if (aLocI == -1) { //Because there is no A22 for this taxa, none of its intersections are in A.
doubleGStar[i] = doubleG[i];
} else {
for (int j = 0; j < size; j++) {
int aLocJ = aTaxa.indexOf(gTaxa.get(j));
if (aLocJ == -1) {
doubleGStar[i][j] = doubleG[i][j];
} else {
doubleGStar[i][j] = (weight * doubleG[i][j]) + ((1.0 - weight) * doubleA[aLocI][aLocJ]);
}
}
}
}
return new DistanceMatrix(doubleGStar, gMatrix.getTaxaList());
}
/**
* Given the inverse of an A matrix (Pedigree Kinship matrix) and a G Matrix
* (Genetic Kinship Matrix) which contains mostly entries in the A Matrix
* creates a combined (H) matrix.
*
* @param aInverse Inverted Pedigree kinship(A) matrix
* @param gStarInverse Inverted and weighted kinship(G*) matrix. Should contain mostly Taxa in
* common with A matrix for best results
*
* @return Combined matrix based on aInverse and gInverse
*/
// Shorthand notation used: A' = A^-1 (A inverse) = A prime
// a[1,1] is a11 from the research paper
public static DistanceMatrix generateCombinedMatrix(DistanceMatrix aInverse, DistanceMatrix gStarInverse) {
List aTaxa = aInverse.getTaxaList();
List gTaxa = gStarInverse.getTaxaList();
//Generate Taxa intersections
List aOnlyTaxa = new LinkedList<>(aTaxa);
aOnlyTaxa.removeAll(gTaxa);
List gOnlyTaxa = new LinkedList<>(gTaxa);
gOnlyTaxa.removeAll(aTaxa);
List unionTaxa = new LinkedList<>(aTaxa);
unionTaxa.removeAll(aOnlyTaxa);
//Entries not in A are added to the end of A as identity.
//A[1]
List matrixOrder = new ArrayList<>(aOnlyTaxa);
matrixOrder.addAll(gOnlyTaxa);
//A[2]
matrixOrder.addAll(unionTaxa);
double[][] aPrime = aInverse.getDistances();
double[][] gStarPrime = gStarInverse.getDistances();
int outputSize = aTaxa.size() + gOnlyTaxa.size();
double[][] hPrime = new double[outputSize][outputSize];
//Combined Matrix entries for A[1][1] are copied from A matrix
for (int i = 0; i < aPrime.length; i++) {
int newI = matrixOrder.indexOf(aTaxa.get(i));
for (int j = 0; j < aPrime.length; j++) {
int newJ = matrixOrder.indexOf(aTaxa.get(j));
hPrime[newI][newJ] = aPrime[i][j];
}
}
//Add Taxa only in the GMatrix to the A Matrix with an identity of 1 and no other values
for (Taxon gOnly : gOnlyTaxa) {
int newI = matrixOrder.indexOf(gOnly);
hPrime[newI][newI] = 1.0;
}
//Now that we have a combined matrix of
//a11 a12
//a21 a22
//we can replace a22 with
//w*g - (1-w)a22
for (int i = 0; i < gTaxa.size(); i++) {
int newI = matrixOrder.indexOf(gTaxa.get(i));
for (int j = 0; j < gTaxa.size(); j++) {
int newJ = matrixOrder.indexOf(gTaxa.get(j));
hPrime[newI][newJ] = gStarPrime[i][j];
}
}
TaxaListBuilder builder = new TaxaListBuilder();
for (Taxon current : matrixOrder) {
builder.add(current);
}
DistanceMatrix hInverse = new DistanceMatrix(hPrime, builder.build());
return hInverse;
}
/**
* Gets the Eigenvalue Decomposition of a distance matrix. Helpful in
* determining the optimal weights of a combined matrix.
*
* @param input Input matrix
*
* @return Eigenvalue Decomposition of the matrix
*/
private static EigenvalueDecomposition decompose(DistanceMatrix input) {
return DoubleMatrixFactory.DEFAULT.make(input.getDistances()).getEigenvalueDecomposition();
}
@Override
public ImageIcon getIcon() {
URL imageURL = HMatrixPlugin.class.getResource("/net/maizegenetics/analysis/images/hmatrix.png");
if (imageURL == null) {
return null;
} else {
return new ImageIcon(imageURL);
}
}
@Override
public String getButtonName() {
return "Combined A and G Relationship Matrix";
}
@Override
public String getToolTipText() {
return "Create Combined A and G Relationship Matrix (H Matrix)";
}
@Override
public String getCitation() {
return "Lamos-Sweeney J, Nti-Addae Y, Robbins K, Casstevens T. (Oct. 2015) Second Tassel Hackathon.";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy