net.maizegenetics.analysis.gbs.repgen.RepGenLDAnalysisPlugin Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
/**
*
*/
package net.maizegenetics.analysis.gbs.repgen;
import java.awt.Frame;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.stream.IntStream;
import javax.swing.ImageIcon;
import org.apache.commons.math3.stat.correlation.PearsonsCorrelation;
import org.apache.commons.math3.stat.correlation.SpearmansCorrelation;
import org.apache.log4j.Logger;
import com.google.common.collect.HashMultimap;
import com.google.common.collect.Multimap;
import com.google.common.collect.Multimaps;
import net.maizegenetics.analysis.popgen.LinkageDisequilibrium;
import net.maizegenetics.dna.tag.RepGenDataWriter;
import net.maizegenetics.dna.tag.RepGenSQLite;
import net.maizegenetics.dna.tag.Tag;
import net.maizegenetics.dna.tag.TaxaDistribution;
import net.maizegenetics.plugindef.AbstractPlugin;
import net.maizegenetics.plugindef.DataSet;
import net.maizegenetics.plugindef.GeneratePluginCode;
import net.maizegenetics.plugindef.PluginParameter;
/**
* This class takes a rAmpSeq (formerly RepGen) database and for
* each tag in the tag table, performs the following tag-tag
* correlations based on the taxa distribution for each tag
* (1) tag-tag Pearson's correlation
* (2) tag-tag Spearman's correlation
* (3) tag-tag presence/absence correlations
* (4) r-squared
*
* The vectors presented to the analysis methods represent
* a list of taxa and the number of times the tag was seen
* in that taxa. The presence/absence vectors have a 1 or 0
* as values in each slot.
* @author lcj34
*
*/
public class RepGenLDAnalysisPlugin extends AbstractPlugin {
private static final Logger myLogger = Logger.getLogger(RepGenLDAnalysisPlugin.class);
private PluginParameter myDBFile = new PluginParameter.Builder("db", null, String.class).guiName("Input DB").required(true).inFile()
.description("Input database file with tags and taxa distribution").build();
private PluginParameter minTaxa = new PluginParameter.Builder<>("minTaxa", 20, Integer.class).guiName("Min Taxa for RSquared")
.description("Minimum number of taxa that must be present for R-squared to be calculated.").build();
public RepGenLDAnalysisPlugin() {
super(null, false);
}
public RepGenLDAnalysisPlugin(Frame parentFrame) {
super(parentFrame, false);
}
public RepGenLDAnalysisPlugin(Frame parentFrame, boolean isInteractive) {
super(parentFrame, isInteractive);
}
@Override
public void postProcessParameters() {
if (myDBFile.isEmpty() || !Files.exists(Paths.get(inputDB()))) {
throw new IllegalArgumentException("RepGenLDAnalysisPlugin: postProcessParameters: Input DB not set or found");
}
}
@Override
public DataSet processData(DataSet input) {
long totalTime = System.nanoTime();
long time=System.nanoTime();
try {
System.out.println("RepGenLDAnalysis:processData begin, get all tags/taxadist from db");
RepGenDataWriter repGenData=new RepGenSQLite(inputDB());
Map tagTaxaMap = repGenData.getAllTagsTaxaMap();
int tagcount = 0;
int processedTags = 0;
System.out.println("TIme to get all tags with taxa from db: " + (System.nanoTime() - totalTime)/1e9 + " seconds.\n");
time = System.nanoTime();
Multimap tagTagCorrelations = Multimaps.synchronizedMultimap(HashMultimap.create());
System.out.println("\nStart processing tag correlations. Number of tags in db: " + tagTaxaMap.keySet().size());
Set tagSet = tagTaxaMap.keySet();
List tagList = new ArrayList(tagSet);
for (int tidx = 0; tidx < tagList.size(); tidx++) {
//for (Tag tag1 : tagTaxaMap.keySet()) {
Tag tag1 = tagList.get(tidx);
tagcount++;
processedTags++;
// get dist for each taxa
TaxaDistribution tag1TD = tagTaxaMap.get(tag1);
if (tag1TD == null) {
((RepGenSQLite)repGenData).close();
System.out.println("GetTagTaxaDist: got null tagTD at tagcount " + tagcount);
return null; // But this should return an error?
}
int[] depths1 = tag1TD.depths(); // gives us the depths for each taxon
// This needs to be doubles for Pearson
double[] ddepths1 = new double[depths1.length];
// Apparently no shorter method of casting int to double
for (int idx = 0; idx < depths1.length; idx++) {
ddepths1[idx] = (double)depths1[idx];
}
double[] depthsPrime1 = new double[depths1.length];
for (int idx = 0; idx < depthsPrime1.length; idx++) {
// boolean - presence/absence
if (ddepths1[idx] > 0) depthsPrime1[idx] = 1;
else depthsPrime1[idx] = 0;
}
final int tIdxFinal = tidx; // IntStream forEach must have "final" variable, tidx is not final
IntStream.range(tidx+1,tagList.size()).parallel().forEach(item -> {
calculateCorrelations(tagTagCorrelations, tagTaxaMap,
tagList.get(tIdxFinal), tagList.get(item), ddepths1, depthsPrime1);
});
if (tagcount > 1000) {
// comment out when run for real!
System.out.println("FInished processing " + processedTags + " tags, this set took " + (System.nanoTime() - time)/1e9 + " seconds, now load to db ..." );
time = System.nanoTime();
repGenData.putTagTagCorrelationMatrix(tagTagCorrelations);
System.out.println("Loading DB took " + (System.nanoTime() - time)/1e9 + " seconds.\n");
tagcount = 0;
tagTagCorrelations.clear(); // start fresh with next 1000
time = System.nanoTime();
}
}
if (tagcount > 0 ) {
System.out.println("Finished processing last tags, load to DB");
time = System.nanoTime();
repGenData.putTagTagCorrelationMatrix(tagTagCorrelations);
System.out.println("Loading DB took " + (System.nanoTime() - time)/1e9 + " seconds.\n");
tagcount = 0;
tagTagCorrelations.clear(); // start fresh with next 1000
}
System.out.println("Total number of tags processed: " + processedTags );
((RepGenSQLite)repGenData).close();
} catch (Exception exc) {
System.out.println("RepGenLDAnalysis:process_data: processing error");
exc.printStackTrace();
}
System.out.println("Process took " + (System.nanoTime() - totalTime)/1e9 + " seconds.\n");
return null;
}
public void calculateCorrelations(Multimap tagTagCorrelations, Map tagTaxaMap,
Tag tag1, Tag tag2, double[] ddepths1,double[] depthsPrime1) {
TaxaDistribution tag2TD = tagTaxaMap.get(tag2);
if (tag2TD == null) {
System.out.println("GetTagTaxaDist: got null tagTD for sequence " + tag2.sequence());
return ;
}
// I need doubles below !!
int[] depths2 = tag2TD.depths(); // gives us the depths for each taxon
double[] ddepths2 = new double[depths2.length];
// Apparently no shorter method of casting int to double
for (int idx = 0; idx < depths2.length; idx++) {
ddepths2[idx] = (double)depths2[idx];
}
double[] depthsPrime2 = new double[depths2.length];
for (int idx = 0; idx < depthsPrime1.length; idx++) {
// boolean - presence/absence
if (ddepths2[idx] > 0) depthsPrime2[idx] = 1;
else depthsPrime2[idx] = 0;
}
// From analysis.association.GenomicSelectionPlugin.java:
PearsonsCorrelation Pearsons = new PearsonsCorrelation();
double p1 = Pearsons.correlation(ddepths1,ddepths2);
SpearmansCorrelation Spearmans = new SpearmansCorrelation();
double spearval = Spearmans.correlation(ddepths1, ddepths2);
double p2 = Pearsons.correlation(depthsPrime1, depthsPrime2);
// Count number of times both tags appeared in a taxa, number
// of times neither tag appeared in a taxa, number of times
// tag1 appeared but not tag2, and number of times tag2 appeared by not tag1
int t1Nott2 = 0;
int t2Nott1 = 0;
int neither = 0;
int both = 0;
for (int didx = 0; didx < depthsPrime2.length; didx++) {
if (depthsPrime1[didx] > 0 && depthsPrime2[didx] > 0) both++;
if (depthsPrime1[didx] == 0 && depthsPrime2[didx] == 0) neither++;
if (depthsPrime1[didx] > 0 && depthsPrime2[didx] == 0) t1Nott2++;
if (depthsPrime1[didx] == 0 && depthsPrime2[didx] > 0) t2Nott1++;
}
// Calculate r-squared based on presence/absence of tags at each taxa.
double r2 = LinkageDisequilibrium.calculateRSqr(neither, t1Nott2, t2Nott1, both, minTaxa());
TagCorrelationInfo tci = new TagCorrelationInfo(tag2,p1,spearval,p2,r2);
tagTagCorrelations.put(tag1, tci);
}
@Override
public ImageIcon getIcon() {
// TODO Auto-generated method stub
return null;
}
@Override
public String getButtonName() {
// TODO Auto-generated method stub
return null;
}
// The following getters and setters were auto-generated.
// Please use this method to re-generate.
//
public static void main(String[] args) {
GeneratePluginCode.generate(RepGenLDAnalysisPlugin.class);
}
@Override
public String getToolTipText() {
// TODO Auto-generated method stub
return null;
}
/**
* Input database file with tags and taxa distribution
*
* @return Input DB
*/
public String inputDB() {
return myDBFile.value();
}
/**
* Set Input DB. Input database file with tags and taxa
* distribution
*
* @param value Input DB
*
* @return this plugin
*/
public RepGenLDAnalysisPlugin inputDB(String value) {
myDBFile = new PluginParameter<>(myDBFile, value);
return this;
}
/**
* Minimum number of taxa that must be present for R-squared
* to be calculated.
*
* @return Min Taxa for RSquared
*/
public Integer minTaxa() {
return minTaxa.value();
}
/**
* Set Min Taxa for RSquared. Minimum number of taxa that
* must be present for R-squared to be calculated.
*
* @param value Min Taxa for RSquared
*
* @return this plugin
*/
public RepGenLDAnalysisPlugin minTaxa(Integer value) {
minTaxa = new PluginParameter<>(minTaxa, value);
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy