net.maizegenetics.analysis.imputation.BackwardForwardAlgorithm Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.imputation;
import java.io.BufferedWriter;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.stream.Collectors;
import org.apache.log4j.Logger;
import net.maizegenetics.analysis.imputation.EmissionProbability;
import net.maizegenetics.analysis.imputation.TransitionProbability;
/**
* @author pbradbury
* The BackwardForward algorithm is an HMM that is used to estimate the probability of every possible state at each position in a sequence.
* This implementation is based on the description in LR Rabiner (1986) A tutorial on hidden Markov models and select applications in speech recognition. Proceedings of the IEEE 77(2):257-286.
* To use this class, first supply observations, positions, a TransitionProbability object, an EmissionProbability object, and the initial state probabilities. The calculate alpha and beta. Typical usage will be:
* BackwardForwardAlgorithm myBackwardForward = new BackwardForwardAlgorithm()
* .observations(obs)
* .positions(pos)
* .transition(transition)
* .emission(emission)
* .initialStateProbability(probs)
* .calculateAlpha()
* .calculateBeta()
*
* The either use gamma() to retrieve a List of values or use writeGamma(String outputFile) to save the values to an output file.
*/
public class BackwardForwardAlgorithm {
private static final Logger myLogger = Logger.getLogger(BackwardForwardAlgorithm.class);
private int[] myObservations;
private int[] myPositions;
private TransitionProbability myTransitions;
private EmissionProbability myEmissions;
private double[] initialStateProbability;
private List alpha;
private List beta;
/**
* The BackwardForward algorithm is used to calculate the probability of each state at each position.
*
*/
public BackwardForwardAlgorithm() {
}
public BackwardForwardAlgorithm calculateAlpha() {
int nStates = myTransitions.getNumberOfStates();
int nObs = myObservations.length;
alpha = new LinkedList<>();
//1. initialize: alpha[1](i) = p[i]b[i](O[1]), i = state i
double[] aPrior = new double[nStates];
for (int s = 0; s < nStates; s++)
aPrior[s] = initialStateProbability[s] * myEmissions.getProbObsGivenState(s, myObservations[0], 0);
alpha.add(aPrior);
//2. induction: alpha[t+1](j) = {sum[i=1 to N] alpha[t](i)a[ij]} b[j](O[t+1])
for (int t = 1; t < nObs; t++) { //this t is the t+1 in the formula, aPrior = alpha[t]
double[] aT = new double[nStates]; //this is alpha[t+1]
myTransitions.setNode(t);
for (int j = 0; j < nStates; j++) {
double sumTrans = 0;
for (int i = 0; i < nStates; i++) sumTrans += aPrior[i] * myTransitions.getTransitionProbability(i, j);
aT[j] = sumTrans * myEmissions.getProbObsGivenState(j, myObservations[t], t);
}
aT = multiplyArrayByConstantIfSmall(aT);
alpha.add(aT);
aPrior = aT;
}
return this;
}
private double[] multiplyArrayByConstantIfSmall(double[] dblArray) {
double minval = Arrays.stream(dblArray).min().getAsDouble();
if (minval < 1e-50) {
double maxval = Arrays.stream(dblArray).max().getAsDouble();
if (maxval < 1e-25) return Arrays.stream(dblArray).map(d -> d*1e25).toArray();
}
return dblArray;
}
public BackwardForwardAlgorithm calculateBeta() {
LinkedList betaTemp = new LinkedList<>();
int nStates = myTransitions.getNumberOfStates();
int nObs = myObservations.length;
//initialization: beta[T](i) = 1
double[] bNext = new double[nStates];
Arrays.fill(bNext, 1.0);
betaTemp.add(bNext);
//induction: beta[t](i) = sum(j=1 to N): a[i][j]*b[j](O[t+1])*beta[t+1](j)
for (int t = nObs - 2; t >= 0; t--) {
double[] bT = new double[nStates];
myTransitions.setNode(t+1);
for (int i = 0; i < nStates; i++) {
double sumStates = 0;
for (int j = 0; j < nStates; j++) {
sumStates += myTransitions.getTransitionProbability(i, j) * myEmissions.getProbObsGivenState(j, myObservations[t + 1], t + 1) * bNext[j];
}
bT[i] = sumStates;
}
bT = multiplyArrayByConstantIfSmall(bT);
betaTemp.addFirst(bT);
bNext = bT;
}
beta = betaTemp;
return this;
}
private void printSite(int pos, double[] values) {
System.out.print(pos + ": ");
Arrays.stream(values).mapToObj(d -> String.format("%1.4f ", d)).forEach(System.out::print);
System.out.println();
}
public List gamma() {
List gamma = new ArrayList<>();
Iterator itAlpha = alpha.iterator();
Iterator itBeta = beta.iterator();
//gamma[t](i) = P(q[t] = S[i] | O,model)
//gamma[t](i) = alpha[t](i)*beta[t](i) / {sum(j=1 to N): alpha[t](j)*beta[t](j)}
while(itAlpha.hasNext()) {
double[] alphaArray = itAlpha.next();
double[] betaArray = itBeta.next();
int n = alphaArray.length;
double[] gammaArray = new double[n];
for (int i = 0; i < n; i++) gammaArray[i] = alphaArray[i] * betaArray[i];
double divisor = Arrays.stream(gammaArray).sum();
for (int i = 0; i < n; i++) gammaArray[i] /= divisor;
gamma.add(gammaArray);
}
return gamma;
}
public void writeGamma(String outputFile, String formatString) {
Iterator itAlpha = alpha.iterator();
Iterator itBeta = beta.iterator();
int counter = 0;
try(BufferedWriter bw = Files.newBufferedWriter(Paths.get(outputFile))) {
while(itAlpha.hasNext()) {
double[] alphaArray = itAlpha.next();
double[] betaArray = itBeta.next();
int n = alphaArray.length;
double[] gammaArray = new double[n];
for (int i = 0; i < n; i++) gammaArray[i] = alphaArray[i] * betaArray[i];
double divisor = Arrays.stream(gammaArray).sum();
double[] normalizedGamma = Arrays.stream(gammaArray).map(g -> g/divisor).toArray();
bw.write(myPositions[counter] + "\t");
bw.write(Arrays.stream(normalizedGamma)
.mapToObj(dbl -> String.format(formatString, dbl))
.collect(Collectors.joining("\t", "", "\n")));
counter++;
}
} catch(IOException ioe) {
throw new RuntimeException("Unable to write " + outputFile, ioe);
}
}
public void writeGamma(String outputFile) {
writeGamma(outputFile, "%1.2e");
}
public BackwardForwardAlgorithm emission(EmissionProbability emission) {
myEmissions = emission;
return this;
}
public BackwardForwardAlgorithm transition(TransitionProbability transition) {
myTransitions = transition;
return this;
}
public BackwardForwardAlgorithm observations(int[] observations) {
myObservations = observations;
return this;
}
public BackwardForwardAlgorithm positions(int[] positions) {
myPositions = positions;
return this;
}
public BackwardForwardAlgorithm initialStateProbability(double[] probs) {
initialStateProbability = probs;
return this;
}
public List alpha() {return alpha;}
public List beta() {return beta;}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy