net.maizegenetics.matrixalgebra.Matrix.BlasDoubleMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.matrixalgebra.Matrix;
import java.util.Arrays;
import org.apache.log4j.Logger;
import net.maizegenetics.matrixalgebra.decomposition.BlasEigenvalueDecomposition;
import net.maizegenetics.matrixalgebra.decomposition.BlasSingularValueDecomposition;
import net.maizegenetics.matrixalgebra.decomposition.EigenvalueDecomposition;
import net.maizegenetics.matrixalgebra.decomposition.QRDecomposition;
import net.maizegenetics.matrixalgebra.decomposition.SingularValueDecomposition;
import net.maizegenetics.taxa.distance.DistanceMatrix;
public class BlasDoubleMatrix implements DoubleMatrix {
private static Logger myLogger = Logger.getLogger(BlasDoubleMatrix.class);
public static native void multMatrices(double[] A, int nrowsA, int ncolsA, double[] B, int nrowsB, int ncolsB, double[] C, double alpha, double beta,
boolean transA, boolean transB);
public static native int solveLSdgelsd(double[] A, int Arows, int Acols, double[] B, int Bcols, double rcond, int[] rank);
public static native int solveLSdgelsy(double[] A, int Arows, int Acols, double[] B, int Bcols, double rcond, int[] rank);
public static native int singularValueDecompositionDgesvd(char jobu, char jobvt, int m, int n, double[] A, int lda, double[] S, double[] U, int ldu, double[] VT, int ldvt);
public static native int singularValueDecompositionDgesdd(char jobz, int m, int n, double[] A, int lda, double[] S, double[] U, int ldu, double[] VT, int ldvt);
public static native int eigenValueSymmetricDecomposition(int order, double[] A, double[] eigval, double[] eigvector); //A is the matrix on entry, eigenvectors on exit; returns error code
//column major implementation
protected double[] myMatrix;
protected int nrows;
protected int ncols;
protected int size;
public BlasDoubleMatrix() {
}
public BlasDoubleMatrix(double[][] values) {
nrows = values.length;
ncols = values[0].length;
size = nrows * ncols;
myMatrix = new double[size];
int ptr = 0;
for (int c = 0; c < ncols; c++) {
for (int r = 0; r < nrows; r++) {
myMatrix[ptr++] = values[r][c];
}
}
}
public BlasDoubleMatrix(DistanceMatrix values) {
nrows = (int) values.getRowCount();
ncols = values.getColumnCount() - 1;
size = nrows * ncols;
myMatrix = new double[size];
int ptr = 0;
for (int c = 0; c < ncols; c++) {
for (int r = 0; r < nrows; r++) {
myMatrix[ptr++] = values.getDistance(r, c);
}
}
}
public BlasDoubleMatrix(int nrows, int ncols) {
this.nrows = nrows;
this.ncols = ncols;
size = nrows * ncols;
myMatrix = new double[size];
}
public static BlasDoubleMatrix getInstance(int nrows, int ncols, double[] values, boolean columnMajor) {
if (columnMajor) {
BlasDoubleMatrix bdm = new BlasDoubleMatrix();
bdm.nrows = nrows;
bdm.ncols = ncols;
bdm.myMatrix = values;
bdm.size = nrows * ncols;
return bdm;
} else {
BlasDoubleMatrix bdm = new BlasDoubleMatrix();
bdm.nrows = ncols;
bdm.ncols = nrows;
bdm.myMatrix = values;
bdm.size = nrows * ncols;
return (BlasDoubleMatrix) bdm.transpose();
}
}
public static BlasDoubleMatrix getInstance(int nrows, int ncols, double dblValue) {
BlasDoubleMatrix bdm = new BlasDoubleMatrix(nrows, ncols);
Arrays.fill(bdm.myMatrix, dblValue);
return bdm;
}
@Override
public double get(int row, int col) {
return myMatrix[getIndex(row,col)];
}
@Override
public double getChecked(int row, int col) {
if (row < nrows && col < ncols) {
return myMatrix[getIndex(row,col)];
}
return Double.NaN;
}
@Override
public void set(int row, int col, double value) {
myMatrix[getIndex(row,col)] = value;
}
@Override
public void setChecked(int row, int col, double value) {
if (row < nrows && col < ncols) {
myMatrix[getIndex(row,col)] = value;
}
}
@Override
public DoubleMatrix transpose() {
BlasDoubleMatrix bdm;
if (nrows > 1 && ncols > 1) {
bdm = new BlasDoubleMatrix(ncols, nrows);
int ptr = 0;
for (int i = 0; i < size; i++) {
bdm.myMatrix[ptr] = myMatrix[i];
ptr += bdm.nrows;
if (ptr >= size) ptr -= size - 1;
}
} else {
bdm = (BlasDoubleMatrix) copy();
bdm.nrows = ncols;
bdm.ncols = nrows;
}
return bdm;
}
public void transposeInPlace() {
BlasDoubleMatrix bdm = (BlasDoubleMatrix) transpose();
ncols = bdm.ncols;
nrows = bdm.nrows;
myMatrix = bdm.myMatrix;
}
@Override
public DoubleMatrix mult(DoubleMatrix dm, boolean transpose,
boolean transposedm) {
BlasDoubleMatrix B = (BlasDoubleMatrix) dm;
BlasDoubleMatrix C = new BlasDoubleMatrix();
if (transpose) C.nrows = ncols;
else C.nrows = nrows;
if (transposedm) C.ncols = B.nrows;
else C.ncols = B.ncols;
C.size = C.nrows * C.ncols;
C.myMatrix = new double[C.size];
multMatrices(myMatrix, nrows, ncols, B.myMatrix, B.nrows, B.ncols, C.myMatrix, 1.0, 0.0, transpose, transposedm);
return C;
}
@Override
public DoubleMatrix multadd(DoubleMatrix A, DoubleMatrix B, double alpha,
double beta, boolean transpose, boolean transposeA) {
BlasDoubleMatrix C = (BlasDoubleMatrix) A;
BlasDoubleMatrix D;
if (B == null) {
int drows,dcols;
if (transpose) drows = ncols;
else drows = nrows;
if (transposeA) dcols = C.nrows;
else dcols = C.ncols;
D = new BlasDoubleMatrix(drows, dcols);
} else {
D = (BlasDoubleMatrix) B.copy();
}
multMatrices(myMatrix, nrows, ncols, C.myMatrix, C.nrows, C.ncols, D.myMatrix, alpha, beta, transpose, transposeA);
return D;
}
@Override
public DoubleMatrix mult(DoubleMatrix dm) {
return mult(dm, false, false);
}
@Override
public DoubleMatrix crossproduct() {
return mult(this, true, false);
}
@Override
public DoubleMatrix crossproduct(DoubleMatrix dm) {
return mult(dm, true, false);
}
@Override
public DoubleMatrix tcrossproduct() {
return mult(this, false, true);
}
@Override
public DoubleMatrix tcrossproduct(DoubleMatrix dm) {
return mult(dm, false, true);
}
@Override
public DoubleMatrix concatenate(DoubleMatrix dm, boolean rows) {
BlasDoubleMatrix B = (BlasDoubleMatrix) dm;
BlasDoubleMatrix bdm = new BlasDoubleMatrix();
bdm.size = size + B.size;
bdm.myMatrix = new double[bdm.size];
if (rows & ncols == B.ncols) {
bdm.nrows = nrows + B.nrows;
bdm.ncols = ncols;
int myptr = 0;
int Bptr = 0;
int bdmptr = 0;
for (int c = 0; c < ncols; c++) {
System.arraycopy(myMatrix, myptr, bdm.myMatrix, bdmptr, nrows);
bdmptr += nrows;
myptr += nrows;
System.arraycopy(B.myMatrix, Bptr, bdm.myMatrix, bdmptr, B.nrows);
bdmptr += B.nrows;
Bptr += B.nrows;
}
} else if (nrows == B.nrows) {
bdm.nrows = nrows;
bdm.ncols = ncols + B.ncols;
System.arraycopy(myMatrix, 0, bdm.myMatrix, 0, size);
System.arraycopy(B.myMatrix, 0, bdm.myMatrix, size, B.size);
}
return bdm;
}
@Override
public DoubleMatrix inverse() {
return generalizedInverse();
}
@Override
public boolean invert() {
BlasDoubleMatrix inv = (BlasDoubleMatrix) generalizedInverseWithRank(new int[]{0});
myMatrix = inv.myMatrix;
return true;
}
@Override
public DoubleMatrix generalizedInverse() {
return generalizedInverseWithRank(new int[]{0});
}
@Override
public DoubleMatrix generalizedInverseWithRank(int[] rank) {
//the native function overwrites B (the data) with the solution
BlasDoubleMatrix B = getIdentityMatrix(nrows);
int info = solveLSdgelsd(Arrays.copyOf(myMatrix, size), nrows, ncols, B.myMatrix, B.ncols, 1e-10, rank);
if (info == 0) return B;
myLogger.error(String.format("inverse failed in BlasDoubleMatrix, info = %d\n",info));
return null;
}
@Override
public DoubleMatrix solve(DoubleMatrix Y) {
BlasDoubleMatrix bdy = (BlasDoubleMatrix) Y.copy();
int[] rank = new int[]{0};
int info = solveLSdgelsd(myMatrix, nrows, ncols, bdy.myMatrix, bdy.ncols, 1e-10, rank);
if (info == 0) return bdy;
myLogger.error(String.format("solve failed in BlasDoubleMatrix, info = %d\n",info));
return null;
}
@Override
public int numberOfRows() {
return nrows;
}
@Override
public int numberOfColumns() {
return ncols;
}
@Override
public DoubleMatrix row(int i) {
if (i >= nrows) return null;
BlasDoubleMatrix bdm = new BlasDoubleMatrix();
bdm.nrows = ncols;
bdm.ncols = 1;
bdm.size = ncols;
bdm.myMatrix = new double[ncols];
int myptr = i;
int bdmptr = 0;
while (myptr < size) {
bdm.myMatrix[bdmptr++] = myMatrix[myptr];
myptr += nrows;
}
return bdm;
}
@Override
public DoubleMatrix column(int j) {
if (j >= ncols) return null;
BlasDoubleMatrix bdm = new BlasDoubleMatrix();
bdm.nrows = nrows;
bdm.ncols = 1;
bdm.size = nrows;
int start = j*nrows;
int end = start + nrows;
bdm.myMatrix = Arrays.copyOfRange(myMatrix, start, end);
return bdm;
}
@Override
public DoubleMatrix[] getXtXGM() {
DoubleMatrix xtx = crossproduct();
DoubleMatrix g = xtx.inverse();
BlasDoubleMatrix xg = (BlasDoubleMatrix) mult(g);
BlasDoubleMatrix m = getIdentityMatrix(nrows);
multMatrices(xg.myMatrix, xg.nrows, xg.ncols, myMatrix, nrows, ncols, m.myMatrix, -1, 1, false, true);
return new DoubleMatrix[]{xtx, g, m};
}
@Override
public DoubleMatrix copy() {
BlasDoubleMatrix bdm = new BlasDoubleMatrix();
bdm.myMatrix = Arrays.copyOf(myMatrix, size);
bdm.ncols = ncols;
bdm.nrows = nrows;
bdm.size = size;
return bdm;
}
@Override
public EigenvalueDecomposition getEigenvalueDecomposition() {
return new BlasEigenvalueDecomposition(this);
}
@Override
public SingularValueDecomposition getSingularValueDecomposition() {
return new BlasSingularValueDecomposition(this);
}
@Override
public QRDecomposition getQRDecomposition() {
// TODO Auto-generated method stub
return null;
}
@Override
public DoubleMatrix minus(DoubleMatrix dm) {
BlasDoubleMatrix A = (BlasDoubleMatrix) copy();
A.minusEquals(dm);
return A;
}
@Override
public void minusEquals(DoubleMatrix dm) {
BlasDoubleMatrix bdm = (BlasDoubleMatrix) dm;
for (int i = 0; i < size; i++) myMatrix[i] -= bdm.myMatrix[i];
}
@Override
public DoubleMatrix plus(DoubleMatrix dm) {
BlasDoubleMatrix A = (BlasDoubleMatrix) copy();
A.plusEquals(dm);
return A;
}
@Override
public void plusEquals(DoubleMatrix dm) {
BlasDoubleMatrix bdm = (BlasDoubleMatrix) dm;
for (int i = 0; i < size; i++) myMatrix[i] += bdm.myMatrix[i];
}
@Override
public DoubleMatrix scalarAdd(double s) {
BlasDoubleMatrix A = (BlasDoubleMatrix) copy();
A.scalarAddEquals(s);
return A;
}
@Override
public void scalarAddEquals(double s) {
for (int i = 0; i < size; i++) myMatrix[i] += s;
}
@Override
public DoubleMatrix scalarMult(double s) {
BlasDoubleMatrix A = (BlasDoubleMatrix) copy();
A.scalarMultEquals(s);
return A;
}
@Override
public void scalarMultEquals(double s) {
for (int i = 0; i < size; i++) myMatrix[i] *= s;
}
@Override
public DoubleMatrix getSelection(int[] rows, int[] columns) {
BlasDoubleMatrix bdm = new BlasDoubleMatrix();
if (rows == null) bdm.nrows = nrows;
else bdm.nrows = rows.length;
if (columns == null) bdm.ncols = ncols;
else bdm.ncols = columns.length;
bdm.size = bdm.nrows * bdm.ncols;
bdm.myMatrix = getSelectionFromDoubleArray(myMatrix, nrows, ncols, rows, columns);
return bdm;
}
/**
* @param original the original matrix as a one dimensional double array in column-major order
* @param nrows the number of rows in the original matrix
* @param ncols the number of columns in the original matrix
* @param rows an int array of the selected rows
* @param columns an int array of the selected columns
* @return the resulting double array, column-major order
*/
public static double[] getSelectionFromDoubleArray(double[] original, int nrows, int ncols, int[] rows, int[] columns) {
if (rows == null && columns == null) return Arrays.copyOf(original, original.length);
double[] selectedArray;
if (rows == null) {
int numberOfSelectedRows = nrows;
int numberOfSelectedColumns = columns.length;
selectedArray = new double[numberOfSelectedRows * numberOfSelectedColumns];
int ptr = 0;
int myptr = 0;
for (int c : columns) {
int colstart = c * nrows;
for (int r = 0; r < nrows; r++) {
myptr = colstart + r;
selectedArray[ptr++] = original[myptr];
}
}
} else if (columns == null) {
int numberOfSelectedRows = rows.length;
int numberOfSelectedColumns = ncols;
selectedArray = new double[numberOfSelectedRows * numberOfSelectedColumns];
int ptr = 0;
int myptr = 0;
for (int c = 0; c < ncols; c++) {
int colstart = c * nrows;
for (int r : rows) {
myptr = colstart + r;
selectedArray[ptr++] = original[myptr];
}
}
} else {
int numberOfSelectedRows = rows.length;
int numberOfSelectedColumns = columns.length;
selectedArray = new double[numberOfSelectedRows * numberOfSelectedColumns];
int ptr = 0;
int myptr = 0;
for (int c : columns) {
int colstart = c * nrows;
for (int r : rows) {
myptr = colstart + r;
selectedArray[ptr++] = original[myptr];
}
}
}
return selectedArray;
}
@Override
public double rowSum(int row) {
double sum = 0;
int ptr = row;
for (int c = 0; c < ncols; c++) {
sum += myMatrix[ptr];
ptr += nrows;
}
return sum;
}
@Override
public double columnSum(int column) {
double sum = 0;
int start = column * nrows;
int end = start + nrows;
for (int ptr = start; ptr < end; ptr++) sum += myMatrix[ptr];
return sum;
}
@Override
public int columnRank() {
BlasSingularValueDecomposition svd = new BlasSingularValueDecomposition(this, 'N');
return svd.getRank();
}
public double[] getMatrix() { return myMatrix; }
public double[] getMatrixCopy() { return Arrays.copyOf(myMatrix, size); }
public int getSize() { return size; }
public static BlasDoubleMatrix getDiagonalMatrix(double[] diag) {
BlasDoubleMatrix bdm = new BlasDoubleMatrix();
int dim = diag.length;
bdm.nrows = bdm.ncols = dim;
bdm.size = bdm.nrows * bdm.ncols;
bdm.myMatrix = new double[bdm.size];
int ptr = 0;
for (int i = 0; i < bdm.size; i += dim + 1) bdm.myMatrix[i] = diag[ptr++];
return bdm;
}
private int getIndex(int row, int col) {
return col * nrows + row;
}
public static BlasDoubleMatrix getIdentityMatrix(int dim) {
BlasDoubleMatrix bdm = new BlasDoubleMatrix();
bdm.nrows = bdm.ncols = dim;
bdm.size = dim * dim;
bdm.myMatrix = new double[bdm.size];
for (int i = 0; i < bdm.size; i += dim + 1) bdm.myMatrix[i] = 1;
return bdm;
}
public static DoubleMatrix compose(DoubleMatrix[][] input) {
//convert to BlasDoubleMatrices and check for congruence
int nr = input.length;
int nc = input[0].length;
int[] numberOfColumns = new int[nc];
int[] numberOfRows = new int[nr];
int totalrows = 0;
int totalcols = 0;
for (int r = 0; r < nr; r++) {
numberOfRows[r] = input[r][0].numberOfRows();
totalrows += numberOfRows[r];
}
for (int c = 0; c < nc; c++) {
numberOfColumns[c] = input[0][c].numberOfColumns();
totalcols += numberOfColumns[c];
}
BlasDoubleMatrix[][] matrices = new BlasDoubleMatrix[nr][nc];
for (int r = 0; r < nr; r++) {
for (int c = 0; c < nc; c++) {
if (input[r][c].numberOfRows() != numberOfRows[r] || input[r][c].numberOfColumns() != numberOfColumns[c])
throw new IllegalArgumentException("Incongruent matrices input to BlasDoubleMatrix.compose");
matrices[r][c] = (BlasDoubleMatrix) input[r][c];
}
}
//create the new double[] and copy the old stuff to it
int resultSize = totalrows * totalcols;
double[] result = new double[resultSize];
int ptr0 = 0;
for (int c = 0; c < nc; c++) {
int nc2 = numberOfColumns[c];
int ptr1 = 0;
for (int r = 0; r < nr; r++) {
int srcptr = 0;
int destptr = ptr0 + ptr1;
for (int c2 = 0; c2 < nc2; c2++) {
System.arraycopy(matrices[r][c].myMatrix, srcptr, result, destptr, numberOfRows[r]);
srcptr += numberOfRows[r];
destptr += totalrows;
}
ptr1 += numberOfRows[r];
}
ptr0 += totalrows * numberOfColumns[c];
}
return BlasDoubleMatrix.getInstance(totalrows, totalcols, result, true);
}
@Override
public double[] to1DArray() {
if (ncols == 1) return Arrays.copyOf(myMatrix, size);
if (nrows == 1) return Arrays.copyOf(myMatrix, size);
return transpose().to1DArray();
}
@Override
public double[][] toArray() {
double[][] array = new double[nrows][ncols];
for (int r = 0; r < nrows; r++) {
for (int c = 0; c < ncols; c++) {
array[r][c] = get(r,c);
}
}
return array;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
int maxrow = Math.min(20,nrows);
int maxcol = Math.min(20, ncols);
for (int r = 0; r < maxrow; r++) {
sb.append(get(r,0));
for (int c = 1; c < maxcol; c++) {
sb.append(" ").append(get(r,c));
}
sb.append("\n");
}
return sb.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy