net.maizegenetics.stats.statistics.ApproxFastChiSquareDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
// ChiSquareDistribution.java
//
// (c) 1999-2001 PAL Development Core Team
//
// This package may be distributed under the
// terms of the Lesser GNU General Public License (LGPL)
package net.maizegenetics.stats.statistics;
import java.util.Arrays;
/**
* chi-square distribution
* (distribution of sum of squares of n uniform random variables)
*
* (Parameter: n; mean: n; variance: 2*n)
*
* The chi-square distribution is a special case of the Gamma distribution
* (shape parameter = n/2.0, scale = 2.0).
*
* @version $Id: ChiSquareDistribution.java,v 1.1 2007/01/12 03:26:16 tcasstevens Exp $
*
* @author Korbinian Strimmer
*/
public class ApproxFastChiSquareDistribution extends GammaDistribution
{
double[][] precomputed;
int maxN, maxX;
public ApproxFastChiSquareDistribution(int maxX, int maxN) {
this.maxN=maxN;
this.maxX=maxX;
precomputed=new double[maxN][maxX+1];
Arrays.fill(precomputed[0], 0);
for (int n = 1; n < maxN; n++) {
for (int x = 0; x <= maxX; x++) {
precomputed[n][x] = cdf(x,n);
// System.out.printf("%d %d %g %g %n",x, n, precomputed[n][x], cdfFastApprox(x,n));
}
}
// for (int n = 1; n < maxN; n+=20) {
// for (double x = 0; x < maxX; x++) {
// // precomputed[n][x] = cdf(x,n);
// System.out.printf("%g %d %g %g %g %g %n",x+0.7, n, cdf(x+0.7,n), cdfFastApprox(x,n),
// cdfFastApprox(x+0.7,n), cdfFastApprox(x+1,n));
// }
// }
}
//
// Public stuff
//
/**
* probability density function of the chi-square distribution
*
* @param x argument
* @param n degrees of freedom
*
* @return pdf value
*/
public static double pdf(double x, double n)
{
return pdf(x, n/2.0, 2.0);
}
/**
* cumulative density function of the chi-square distribution
*
* @param x argument
* @param n degrees of freedom
*
* @return cdf value
*/
public static double cdf(double x, double n)
{
return cdf(x, n/2.0, 2.0);
}
/**
* cumulative density function of the chi-square distribution
*
* @param x argument
* @param n degrees of freedom
*
* @return cdf value
*/
public double cdfFastApprox(double x, double n)
{ int lx=(int)x;
int ln=(int)n;
int lxFloor=(int)Math.floor(x);
int lxCeil=(int)Math.ceil(x);
double d=x-(double)lxFloor;
double p=((d*precomputed[ln][lxCeil])+((1.0-d)*precomputed[ln][lxFloor]));
return p;
// return precomputed[ln][lx];
}
/**
* quantile (inverse cumulative density function) of the chi-square distribution
*
* @param x argument
* @param n degrees of freedom
*
* @return icdf value
*/
public static double quantile(double y, double n)
{
return quantile(y, n/2.0, 2.0);
}
/**
* mean of the chi-square distribution
*
* @param n degrees of freedom
*
* @return mean
*/
public static double mean(double n)
{
return n;
}
/**
* variance of the chi-square distribution
*
* @param n degrees of freedom
*
* @return variance
*/
public static double variance(double n)
{
return 2.0*n;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy