All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.maizegenetics.stats.statistics.GammaDistribution Maven / Gradle / Ivy

Go to download

TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage disequilibrium.

There is a newer version: 5.2.94
Show newest version
// GammaDistribution.java
//
// (c) 1999-2001 PAL Development Core Team
//
// This package may be distributed under the
// terms of the Lesser GNU General Public License (LGPL)


package net.maizegenetics.stats.statistics;

import net.maizegenetics.stats.math.GammaFunction;


/**
 * gamma distribution.
 *
 * (Parameters: shape, scale; mean: scale*shape; variance: scale^2*shape)
 *
 * @version $Id: GammaDistribution.java,v 1.1 2007/01/12 03:26:16 tcasstevens Exp $
 *
 * @author Korbinian Strimmer
 */
public class GammaDistribution
{
	//
	// Public stuff
	//

	/**
	 * probability density function of the Gamma distribution 
	 * 
	 * @param x argument
	 * @param shape shape parameter
	 * @param scale scale parameter
	 *
	 * @return pdf value
	 */
	public static double pdf(double x, double shape, double scale)
	{
		return	Math.pow(scale,-shape)*Math.pow(x, shape-1.0)/
	 		Math.exp(x/scale + GammaFunction.lnGamma(shape));
	}

	/**
	 * cumulative density function of the Gamma distribution 
	 * 
	 * @param x argument
	 * @param shape shape parameter
	 * @param scale scale parameter
	 *
	 * @return cdf value
	 */
	public static double cdf(double x, double shape, double scale)
	{
		return GammaFunction.incompleteGammaP(shape, x/scale);
	}


	/**
	 * quantile (inverse cumulative density function) of the Gamma distribution
	 *
	 * @param y argument
	 * @param shape shape parameter
	 * @param scale scale parameter
	 *
	 * @return icdf value
	 */
	public static double quantile(double y, double shape, double scale)
	{
		return 0.5*scale*pointChi2(y, 2.0*shape);
	}
	
	/**
	 * mean of the Gamma distribution
	 *
	 * @param shape shape parameter
	 * @param scale scale parameter
	 *
	 * @return mean
	 */
	public static double mean(double shape, double scale)
	{
		return scale*shape;
	}

	/**
	 * variance of the Gamma distribution
	 *
	 * @param shape shape parameter
	 * @param scale scale parameter
	 *
	 * @return variance
	 */
	public static double variance(double shape, double scale)
	{
		return scale*scale * shape;
	}	
	
	// Private
	
	private static double pointChi2(double prob, double v)
	{
		// Returns z so that Prob{x 0.999998 || v <= 0)
		{
			throw new IllegalArgumentException("Arguments out of range");
		}
		g = GammaFunction.lnGamma(v/2);
		xx = v/2;
		c = xx-1;
		if (v < -1.24*Math.log(p))
		{
			ch = Math.pow((p*xx*Math.exp(g+xx*aa)), 1/xx);
			if (ch-e < 0)
			{
				return ch;
			}
		}
		else
		{
			if (v > 0.32)
			{
				x = NormalDistribution.quantile(p, 0, 1);
				p1 = 0.222222/v;
				ch = v*Math.pow((x*Math.sqrt(p1)+1-p1), 3.0);
				if(ch>2.2*v+6)
				{
					ch=-2*(Math.log(1-p)-c*Math.log(.5*ch)+g);
				}			
			}
			else
			{
				ch = 0.4;
				a = Math.log(1-p);

				do
				{
					q = ch;
					p1 = 1+ch*(4.67+ch);
					p2 = ch*(6.73+ch*(6.66+ch));
					t = -0.5+(4.67+2*ch)/p1 - (6.73+ch*(13.32+3*ch))/p2;
					ch -= (1-Math.exp(a+g+.5*ch+c*aa)*p2/p1)/t;
				}
				while (Math.abs(q/ch-1)-.01 > 0);
			}
		}
		do
		{
			q = ch;
			p1 = 0.5*ch;
			if ((t = GammaFunction.incompleteGammaP(xx, p1, g)) < 0)
			{
				throw new IllegalArgumentException("Arguments out of range: t < 0");
			}
			p2 = p-t;
			t = p2*Math.exp(xx*aa+g+p1-c*Math.log(ch));   
			b = t/ch;
			a = 0.5*t-b*c;

			s1 = (210+a*(140+a*(105+a*(84+a*(70+60*a)))))/420;
			s2 = (420+a*(735+a*(966+a*(1141+1278*a))))/2520;
			s3 = (210+a*(462+a*(707+932*a)))/2520;
			s4 = (252+a*(672+1182*a)+c*(294+a*(889+1740*a)))/5040;
			s5 = (84+264*a+c*(175+606*a))/2520;
			s6 = (120+c*(346+127*c))/5040;
			ch += t*(1+0.5*t*s1-b*c*(s1-b*(s2-b*(s3-b*(s4-b*(s5-b*s6))))));
		}
		while (Math.abs(q/ch-1) > e);

		return (ch);
	}
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy