All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.maizegenetics.analysis.association.RidgeRegressionEmmaPlugin Maven / Gradle / Ivy

Go to download

TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage disequilibrium.

There is a newer version: 5.2.94
Show newest version
package net.maizegenetics.analysis.association;

import net.maizegenetics.stats.linearmodels.FactorModelEffect;
import net.maizegenetics.dna.snp.GenotypeTable;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
import net.maizegenetics.util.OpenBitSet;
import net.maizegenetics.util.SimpleTableReport;
import net.maizegenetics.phenotype.CategoricalAttribute;
import net.maizegenetics.phenotype.GenotypePhenotype;
import net.maizegenetics.phenotype.NumericAttribute;
import net.maizegenetics.phenotype.Phenotype;
import net.maizegenetics.phenotype.Phenotype.ATTRIBUTE_TYPE;
import net.maizegenetics.phenotype.PhenotypeAttribute;
import net.maizegenetics.phenotype.PhenotypeBuilder;
import net.maizegenetics.phenotype.TaxaAttribute;
import net.maizegenetics.plugindef.AbstractPlugin;
import net.maizegenetics.plugindef.DataSet;
import net.maizegenetics.plugindef.Datum;

import org.apache.log4j.Logger;

import javax.swing.*;

import java.awt.*;
import java.net.URL;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;

public class RidgeRegressionEmmaPlugin extends AbstractPlugin {

    private static final Logger myLogger = Logger.getLogger(RidgeRegressionEmmaPlugin.class);

    public RidgeRegressionEmmaPlugin(Frame parentFrame, boolean isInteractive) {
        super(parentFrame, isInteractive);
    }

    @Override
    public DataSet performFunction(DataSet input) {
        try {
            List datasets = input.getDataOfType(GenotypePhenotype.class);
            if (datasets.size() < 1) {
                String msg = "No datasets of an appropriate type were selected for the GS analysis.";
                myLogger.error(msg);
                if (isInteractive()) {
                    JOptionPane.showMessageDialog(getParentFrame(), msg, "GS Error", JOptionPane.ERROR_MESSAGE);
                }
                return null;
            }

            LinkedList results = new LinkedList();
            for (Datum dataset : datasets) {
                try {
                    LinkedList aResult = null;
                    aResult = processData(dataset);
                    if (aResult != null) {
                        results.addAll(aResult);
                        fireDataSetReturned(new DataSet(aResult, this));
                    }
                } catch (Exception e) {
                    StringBuilder msg = new StringBuilder("Error in GS processing " + dataset.getName());
                    msg.append(". ").append(e.getMessage());
                    myLogger.error(msg.toString());
                    e.printStackTrace();
                    if (isInteractive()) {
                        JOptionPane.showMessageDialog(getParentFrame(), msg.toString(), "GS Error", JOptionPane.ERROR_MESSAGE);
                    }
                }
            }

            return new DataSet(results, this);
        } finally {
            fireProgress(100);
        }
    }

    public LinkedList processData(Datum dataset) {
        DoubleMatrix phenotype;
        DoubleMatrix genotype;
        DoubleMatrix fixedEffects;
        LinkedList theResults = new LinkedList();
        GenotypePhenotype myGenoPheno = (GenotypePhenotype) dataset.getData();
        GenotypeTable myGenotype = myGenoPheno.genotypeTable();
        Phenotype myPhenotype = myGenoPheno.phenotype();
        
        if (!myGenotype.hasReferenceProbablity()) {
        	throw new IllegalArgumentException("Incorrect data type. A numeric genotype was not found.");
        }
        
        //numbers of different things
        int numberOfMarkers = myGenotype.numberOfSites();
        List dataAttributeList = myPhenotype.attributeListOfType(ATTRIBUTE_TYPE.data);
        List factorAttributeList = myPhenotype.attributeListOfType(ATTRIBUTE_TYPE.factor);
        List covariateAttributeList = myPhenotype.attributeListOfType(ATTRIBUTE_TYPE.covariate);
        TaxaAttribute myTaxaAttribute = myPhenotype.taxaAttribute();
        
        //iterate through the phenotypes
        for (PhenotypeAttribute attr : dataAttributeList) {
        	NumericAttribute dataAttribute = (NumericAttribute) attr;
        	
            //get phenotype data
            double[] phenotypeData = AssociationUtils.convertFloatArrayToDouble(dataAttribute.floatValues());
            int nObs = phenotypeData.length;
            phenotype = DoubleMatrixFactory.DEFAULT.make(nObs, 1, phenotypeData);

            //make the fixed effect matrix
            int numberOfFactors = factorAttributeList.size();
            int numberOfCovariates = covariateAttributeList.size();
            int numberOfEffects = numberOfFactors + numberOfCovariates + 1;
            
            if (numberOfEffects > 1) {
                DoubleMatrix[][] effects = new DoubleMatrix[1][numberOfEffects];
                effects[0][0] = DoubleMatrixFactory.DEFAULT.make(nObs, 1, 1);
                for (int i = 0; i < numberOfFactors; i++) {
                	CategoricalAttribute fa = (CategoricalAttribute) factorAttributeList.get(i);
                    FactorModelEffect fme = new FactorModelEffect(fa.allIntValues(), true);
                    effects[0][i + 1] = fme.getX();
                }
                for (int i = 0; i < numberOfCovariates; i++) {
                	NumericAttribute na = (NumericAttribute) covariateAttributeList.get(i);
                	double[] values = AssociationUtils.convertFloatArrayToDouble(na.floatValues());
                    effects[0][i + numberOfFactors + 1] = DoubleMatrixFactory.DEFAULT.make(nObs, 1, values);
                }
                fixedEffects = DoubleMatrixFactory.DEFAULT.compose(effects);
            } else {
                fixedEffects = DoubleMatrixFactory.DEFAULT.make(nObs, 1, 1);
            }

            //get the genotypes
            genotype = DoubleMatrixFactory.DEFAULT.make(nObs, numberOfMarkers);
            String[] markerNames = new String[numberOfMarkers];
            for (int m = 0; m < numberOfMarkers; m++) {
                for (int i = 0; i < nObs; i++) {
                    genotype.set(i, m, myGenotype.referenceProbability(i, m));
                }
                markerNames[m] = myGenotype.siteName(m);
            }

            RegRidgeEmmaDoubleMatrix ridgeRegression = new RegRidgeEmmaDoubleMatrix(phenotype, fixedEffects, genotype);
            ridgeRegression.solve();

            //output the gebv's for the taxa
            float[] gebv = AssociationUtils.convertDoubleArrayToFloat(ridgeRegression.getBlups());
            String phenoName = attr.name();
            ArrayList attributeList = new ArrayList<>();
            ArrayList typeList = new ArrayList<>();
            
            attributeList.add(myTaxaAttribute);
            typeList.add(ATTRIBUTE_TYPE.taxa);
            
            attributeList.add(new NumericAttribute(phenoName + "_GEBV", gebv, new OpenBitSet(nObs)));
            typeList.add(ATTRIBUTE_TYPE.data);
            
            Phenotype gebvPheno = new PhenotypeBuilder().assignName("GEBV_" + phenoName)
            		.fromAttributeList(attributeList, typeList)
            		.build().get(0);
            
            String datumName = "GEBVs_" + phenoName + "_" + dataset.getName();
            StringBuilder comment = new StringBuilder("Ridge Regression from ");
            comment.append(dataset.getName()).append(":\n");
            comment.append("Genomic Estimated Breeding Values (GEBVs)\n");
            comment.append("trait = ").append(phenoName).append("\n");
            comment.append(nObs).append(" lines");
            theResults.add(new Datum(datumName, gebvPheno, comment.toString()));

            //output the marker blups for the markers as a report
            double[] markerBlups = ridgeRegression.getMrkBlups();
            Object[][] blupTable = new Object[numberOfMarkers][2];
            for (int i = 0; i < numberOfMarkers; i++) {
                blupTable[i][0] = markerNames[i];
                blupTable[i][1] = new Double(markerBlups[i]);
            }
            SimpleTableReport str = new SimpleTableReport("Marker BLUPs for " + dataset.getName(), new String[]{"Marker", phenoName + "_BLUP"}, blupTable);
            datumName = dataset.getName() + "_marker BLUPs_" + phenoName;
            comment = new StringBuilder("Ridge Regression from ");
            comment.append(dataset.getName()).append(":\n");
            comment.append("Marker BLUPs\n");
            comment.append("trait = ").append(phenoName).append("\n");
            comment.append(numberOfMarkers).append(" markers");
            theResults.add(new Datum(datumName, str, comment.toString()));
        }


        return theResults;
    }

    @Override
    public ImageIcon getIcon() {
        URL imageURL = RidgeRegressionEmmaPlugin.class.getResource("/net/maizegenetics/analysis/images/LinearAssociation.gif");
        if (imageURL == null) {
            return null;
        } else {
            return new ImageIcon(imageURL);
        }
    }

    @Override
    public String getButtonName() {
        return "Genomic Selection";
    }

    @Override
    public String getToolTipText() {
        return "Predict Phenotypes using Ridge Regression for Genomic Selection";
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy