net.maizegenetics.analysis.distance.DominanceRelationshipMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
/*
* DominanceRelationshipMatrix
*
* Created on Oct 31, 2015
*/
package net.maizegenetics.analysis.distance;
import java.util.Arrays;
import java.util.Optional;
import java.util.Spliterator;
import static java.util.Spliterator.IMMUTABLE;
import java.util.function.Consumer;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
import net.maizegenetics.dna.snp.GenotypeTable;
import net.maizegenetics.dna.snp.genotypecall.AlleleFreqCache;
import net.maizegenetics.taxa.distance.DistanceMatrix;
import net.maizegenetics.taxa.distance.DistanceMatrixBuilder;
import net.maizegenetics.util.GeneralAnnotationStorage;
import net.maizegenetics.util.ProgressListener;
import net.maizegenetics.util.Tuple;
import org.apache.log4j.Logger;
/**
* Compute Dominance Relationship Matrix for all pairs of taxa. Missing sites
* are ignored. http://www.genetics.org/content/198/4/1759.abstract
*
* @author Terry Casstevens
*/
public class DominanceRelationshipMatrix {
private static final Logger myLogger = Logger.getLogger(DominanceRelationshipMatrix.class);
private static final int DEFAULT_MAX_ALLELES = 6;
private static final KinshipPlugin.ALGORITHM_VARIATION DEFAULT_ALGORITHM_VARIATION = KinshipPlugin.ALGORITHM_VARIATION.Observed_Allele_Freq;
private DominanceRelationshipMatrix() {
// utility
}
/**
* Compute Dominance Relationship Matrix for all pairs of taxa. Missing
* sites are ignored.
*
* @param genotype Genotype Table used to compute dominance relationship
*
* @return Dominance Relationship Matrix
*/
public static DistanceMatrix getInstance(GenotypeTable genotype) {
return getInstance(genotype, DEFAULT_MAX_ALLELES, DEFAULT_ALGORITHM_VARIATION, null);
}
/**
* Compute Dominance Relationship Matrix for all pairs of taxa. Missing
* sites are ignored.
*
* @param genotype Genotype Table used to compute dominance relationship
* @param maxAlleles
* @param variation
* @param listener progress listener
*
* @return Dominance Relationship Matrix
*/
public static DistanceMatrix getInstance(GenotypeTable genotype, int maxAlleles, KinshipPlugin.ALGORITHM_VARIATION variation, ProgressListener listener) {
return computeDominanceRelationships(genotype, maxAlleles, variation, listener);
}
private static DistanceMatrix computeDominanceRelationships(GenotypeTable genotype, int maxAlleles, KinshipPlugin.ALGORITHM_VARIATION variation, ProgressListener listener) {
if ((maxAlleles < 2) || (maxAlleles > 6)) {
throw new IllegalArgumentException("DominanceRelationshipMatrix: computeDominanceRelationships: max alleles must be between 2 and 6 inclusive.");
}
if ((variation != KinshipPlugin.ALGORITHM_VARIATION.Observed_Allele_Freq) && (variation != KinshipPlugin.ALGORITHM_VARIATION.Proportion_Heterozygous)) {
throw new IllegalArgumentException("DominanceRelationshipMatrix: computeDominanceRelationships: variation must be: " + KinshipPlugin.ALGORITHM_VARIATION.Observed_Allele_Freq + " or " + KinshipPlugin.ALGORITHM_VARIATION.Proportion_Heterozygous);
}
int numTaxa = genotype.numberOfTaxa();
long time = System.currentTimeMillis();
//
// Sets up parellel stream to divide up sites for processing.
// Also reduces the distance sums and sum of frequencies into one instance.
//
Optional optional = stream(genotype, maxAlleles, variation, listener).reduce((CountersDistances t, CountersDistances u) -> {
t.addAll(u);
return t;
});
if (!optional.isPresent()) {
return null;
}
CountersDistances counters = optional.get();
double sumpk = counters.mySumOfVariances;
float[] distances = counters.myDistances;
//
// This does the final division of the frequency sum into
// the distance sums.
//
GeneralAnnotationStorage.Builder annotations = GeneralAnnotationStorage.getBuilder();
annotations.addAnnotation(DistanceMatrixBuilder.MATRIX_TYPE, KinshipPlugin.KINSHIP_METHOD.Dominance_Centered_IBS.toString());
annotations.addAnnotation(DistanceMatrixBuilder.MATRIX_ALGORITHM_VARIATION, variation.toString());
DistanceMatrixBuilder builder = DistanceMatrixBuilder.getInstance(genotype.taxa());
builder.annotation(annotations.build());
int index = 0;
for (int t = 0; t < numTaxa; t++) {
for (int i = 0, n = numTaxa - t; i < n; i++) {
builder.set(t, t + i, distances[index] / sumpk);
index++;
}
}
myLogger.info("DominanceRelationshipMatrix: computeDominanceRelationships time: " + (System.currentTimeMillis() - time) / 1000 + " seconds");
return builder.build();
}
private static void fireProgress(int percent, ProgressListener listener) {
if (listener != null) {
if (percent > 100) {
percent = 100;
}
listener.progress(percent, null);
}
}
//
// Each CPU thread (process) creates an instance of this class
// to acculate terms of the Dominance equation. These are
// combined with addAll() to result in one instance at the end.
//
private static class CountersDistances {
private double mySumOfVariances = 0.0;
private final float[] myDistances;
private final int myNumTaxa;
public CountersDistances(int numTaxa) {
myNumTaxa = numTaxa;
myDistances = new float[myNumTaxa * (myNumTaxa + 1) / 2];
}
public void addAll(CountersDistances counters) {
float[] otherDistances = counters.myDistances;
for (int t = 0, n = myDistances.length; t < n; t++) {
myDistances[t] += otherDistances[t];
}
mySumOfVariances += counters.mySumOfVariances;
}
}
//
// This pre-calculates the number of occurances of the major
// for all possible diploid major values. Numbers 0 through 7
// represent A, C, G, T, -, +, N respectively. First three bits
// codes the major. Remaining six bits codes the diploid
// major values. The stored counts are encodings. Value 7 (bits 111) means
// it's not a comparable combination because either major major
// is unknown or the diploid major value is unknown.
// Code 1 (bits 001) is heterozygous.
// Code 2 (bits 010) is homozygous.
//
private static final byte[] PRECALCULATED_COUNTS = new byte[512];
static {
for (int allele = 0; allele < 8; allele++) {
for (int a = 0; a < 8; a++) {
for (int b = 0; b < 8; b++) {
int temp = (allele << 6) | (a << 3) | b;
if ((allele == 7) || ((a == 7) && (b == 7))) {
PRECALCULATED_COUNTS[temp] = 7;
} else if (((allele == a) || (allele == b)) && (a != b)) {
PRECALCULATED_COUNTS[temp] = 1;
} else {
PRECALCULATED_COUNTS[temp] = 2;
}
}
}
}
}
private static final int NUM_CORES_TO_USE = Runtime.getRuntime().availableProcessors() - 1;
//
// Used to report progress. This is not thread-safe but
// works well enough for this purpose.
//
private static int myNumSitesProcessed = 0;
//
// Creates stream from DominanceSiteSpliterator and Genotype Table
//
private static Stream stream(GenotypeTable genotypes, int maxAlleles, KinshipPlugin.ALGORITHM_VARIATION variation, ProgressListener listener) {
myNumSitesProcessed = 0;
return StreamSupport.stream(new DominanceSiteSpliterator(genotypes, 0, genotypes.numberOfSites(), maxAlleles, variation, listener), true);
}
//
// Spliterator that splits the sites
//
static class DominanceSiteSpliterator implements Spliterator {
private int myCurrentSite;
private final int myFence;
private final GenotypeTable myGenotypes;
private final int myNumTaxa;
private final int myNumSites;
private final ProgressListener myProgressListener;
private int myMinSitesToProcess;
private final int myMaxAlleles;
private final KinshipPlugin.ALGORITHM_VARIATION myVariation;
DominanceSiteSpliterator(GenotypeTable genotypes, int currentIndex, int fence, int maxAlleles, KinshipPlugin.ALGORITHM_VARIATION variation, ProgressListener listener) {
myGenotypes = genotypes;
myNumTaxa = myGenotypes.numberOfTaxa();
myNumSites = myGenotypes.numberOfSites();
myCurrentSite = currentIndex;
myFence = fence;
myMaxAlleles = maxAlleles;
myVariation = variation;
myProgressListener = listener;
myMinSitesToProcess = myNumSites / NUM_CORES_TO_USE;
if (myMinSitesToProcess == 0) {
myMinSitesToProcess = myNumSites;
}
}
@Override
public void forEachRemaining(Consumer super CountersDistances> action) {
int numSitesProcessed = myFence - myCurrentSite;
CountersDistances result = new CountersDistances(myNumTaxa);
float[] distances = result.myDistances;
double[] sumOfVariances = new double[1];
float[] answer1 = new float[32768];
float[] answer2 = new float[32768];
float[] answer3 = new float[32768];
for (; myCurrentSite < myFence;) {
//
// This keeps track of number of sites processed. The blocks
// of sites may contain entries for minor major, 2nd minor
// major, etc.
int[] realSites = new int[1];
//
// Pre-calculates possible terms and gets counts for
// three blocks for five sites.
//
Tuple firstBlock = getBlockOfSites(myCurrentSite, sumOfVariances, realSites);
float[] possibleTerms = firstBlock.y;
short[] dominanceEffect1 = firstBlock.x;
Tuple secondBlock = getBlockOfSites(myCurrentSite + realSites[0], sumOfVariances, realSites);
float[] possibleTerms2 = secondBlock.y;
short[] dominanceEffect2 = secondBlock.x;
Tuple thirdBlock = getBlockOfSites(myCurrentSite + realSites[0], sumOfVariances, realSites);
float[] possibleTerms3 = thirdBlock.y;
short[] dominanceEffect3 = thirdBlock.x;
myCurrentSite += realSites[0];
//
// Using possible terms, calculates all possible answers
// for each site block.
//
for (int i = 0; i < 32768; i++) {
answer1[i] = possibleTerms[(i & 0x7000) >>> 12] + possibleTerms[((i & 0xE00) >>> 9) | 0x8] + possibleTerms[((i & 0x1C0) >>> 6) | 0x10] + possibleTerms[((i & 0x38) >>> 3) | 0x18] + possibleTerms[(i & 0x7) | 0x20];
answer2[i] = possibleTerms2[(i & 0x7000) >>> 12] + possibleTerms2[((i & 0xE00) >>> 9) | 0x8] + possibleTerms2[((i & 0x1C0) >>> 6) | 0x10] + possibleTerms2[((i & 0x38) >>> 3) | 0x18] + possibleTerms2[(i & 0x7) | 0x20];
answer3[i] = possibleTerms3[(i & 0x7000) >>> 12] + possibleTerms3[((i & 0xE00) >>> 9) | 0x8] + possibleTerms3[((i & 0x1C0) >>> 6) | 0x10] + possibleTerms3[((i & 0x38) >>> 3) | 0x18] + possibleTerms3[(i & 0x7) | 0x20];
}
//
// Iterates through all pair-wise combinations of taxa adding
// distance comparisons and site counts.
//
int index = 0;
for (int firstTaxa = 0; firstTaxa < myNumTaxa; firstTaxa++) {
//
// Can skip inter-loop if all fifteen sites for first
// taxon is Unknown diploid major values
//
if ((dominanceEffect1[firstTaxa] != 0x7FFF) || (dominanceEffect2[firstTaxa] != 0x7FFF) || (dominanceEffect3[firstTaxa] != 0x7FFF)) {
for (int secondTaxa = firstTaxa; secondTaxa < myNumTaxa; secondTaxa++) {
//
// Combine first taxon's dominance effect with
// second taxon's dominance effect to
// create index into pre-calculated answers
//
distances[index] += answer1[dominanceEffect1[firstTaxa] | dominanceEffect1[secondTaxa]] + answer2[dominanceEffect2[firstTaxa] | dominanceEffect2[secondTaxa]] + answer3[dominanceEffect3[firstTaxa] | dominanceEffect3[secondTaxa]];
index++;
}
} else {
index += myNumTaxa - firstTaxa;
}
}
}
result.mySumOfVariances = sumOfVariances[0];
action.accept(result);
myNumSitesProcessed += numSitesProcessed;
fireProgress((int) ((double) myNumSitesProcessed / (double) myNumSites * 100.0), myProgressListener);
}
private static final int NUM_SITES_PER_BLOCK = 5;
private Tuple getBlockOfSites(int currentSite, double[] sumOfVariances, int[] realSites) {
int currentSiteNum = 0;
//
// This hold possible terms for the dominance calculation.
// First three bits
// identifies relative site (0, 1, 2, 3, 4). Remaining three bits
// whether heterozygous, homozygous, or unknown.
//
float[] possibleTerms = new float[40];
//
// This holds count of major for each taxa.
// Each short holds dominance effect (heterozygous, missing,
// and homozygous) for all NUM_SITES_PER_BLOCK sites
// at given taxon. The encodings are stored in three
// bits each.
//
short[] dominanceEffect = new short[myNumTaxa];
//
// This initializes the counts to 0x7FFF. That means
// diploid allele values for the four sites are Unknown.
//
Arrays.fill(dominanceEffect, (short) 0x7FFF);
while ((currentSiteNum < NUM_SITES_PER_BLOCK) && (currentSite < myFence)) {
byte[] genotypes = myGenotypes.genotypeAllTaxa(currentSite);
int[][] alleles = AlleleFreqCache.allelesSortedByFrequencyNucleotide(genotypes);
int numAlleles = Math.min(alleles[0].length - 1, myMaxAlleles - 1);
if (numAlleles + currentSiteNum <= NUM_SITES_PER_BLOCK) {
//
// Calculates total number of haploid alleles that
// are not missing.
//
int totalAlleleCount = 0;
for (int i = 0; i < alleles[1].length; i++) {
totalAlleleCount += alleles[1][i];
}
for (int a = 0; a < numAlleles; a++) {
byte allele = (byte) alleles[0][a];
float standardizedTerm = 0.0f;
if (myVariation == KinshipPlugin.ALGORITHM_VARIATION.Observed_Allele_Freq) {
float alleleFreq = (float) alleles[1][a] / (float) totalAlleleCount;
standardizedTerm = 2.0f * alleleFreq * (1.0f - alleleFreq);
} else if (myVariation == KinshipPlugin.ALGORITHM_VARIATION.Proportion_Heterozygous) {
standardizedTerm = (float) AlleleFreqCache.proportionHeterozygous(genotypes);
}
sumOfVariances[0] += standardizedTerm * (1.0 - standardizedTerm);
//
// Temporarily stores component terms of equation
//
float[] term = new float[2];
//
// If allele is Unknown, the entire
// site is skipped.
//
if (allele != GenotypeTable.UNKNOWN_ALLELE) {
term[0] = 1.0f - standardizedTerm;
term[1] = -standardizedTerm;
//
// Pre-calculates all possible terms of the summation
// for this current (pseudo-) site.
// Counts (0,0; 0,1; 0,2; 1,1; 1,2; 2,2)
//
int siteNumIncrement = currentSiteNum * 8;
possibleTerms[siteNumIncrement + 1] = term[0] * term[0];
possibleTerms[siteNumIncrement + 3] = term[0] * term[1];
possibleTerms[siteNumIncrement + 2] = term[1] * term[1];
//
// Records allele counts for current site in
// three bits.
//
int temp = (allele & 0x7) << 6;
int shift = (NUM_SITES_PER_BLOCK - currentSiteNum - 1) * 3;
int mask = ~(0x7 << shift) & 0x7FFF;
for (int i = 0; i < myNumTaxa; i++) {
dominanceEffect[i] = (short) (dominanceEffect[i] & (mask | PRECALCULATED_COUNTS[temp | ((genotypes[i] & 0x70) >>> 1) | (genotypes[i] & 0x7)] << shift));
}
}
currentSiteNum++;
}
} else {
return new Tuple<>(dominanceEffect, possibleTerms);
}
currentSite++;
realSites[0]++;
}
return new Tuple<>(dominanceEffect, possibleTerms);
}
@Override
public boolean tryAdvance(Consumer super CountersDistances> action) {
if (myCurrentSite < myFence) {
forEachRemaining(action);
return true;
} else {
return false;
}
}
@Override
/**
* Splits sites
*/
public Spliterator trySplit() {
int lo = myCurrentSite;
int mid = lo + myMinSitesToProcess;
if (mid < myFence) {
myCurrentSite = mid;
return new DominanceSiteSpliterator(myGenotypes, lo, mid, myMaxAlleles, myVariation, myProgressListener);
} else {
return null;
}
}
@Override
public long estimateSize() {
return (long) (myFence - myCurrentSite);
}
@Override
public int characteristics() {
return IMMUTABLE;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy