net.maizegenetics.analysis.distance.GCTADistanceMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
/*
* GCTADistanceMatrix
*
* Created on May 31, 2015
*/
package net.maizegenetics.analysis.distance;
import java.util.Arrays;
import java.util.Optional;
import java.util.Spliterator;
import static java.util.Spliterator.IMMUTABLE;
import java.util.function.Consumer;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
import net.maizegenetics.dna.snp.GenotypeTable;
import net.maizegenetics.dna.snp.genotypecall.AlleleFreqCache;
import net.maizegenetics.prefs.TasselPrefs;
import net.maizegenetics.taxa.TaxaList;
import net.maizegenetics.taxa.distance.DistanceMatrix;
import net.maizegenetics.taxa.distance.DistanceMatrixBuilder;
import net.maizegenetics.taxa.distance.DistanceMatrixWithCounts;
import net.maizegenetics.util.GeneralAnnotationStorage;
import net.maizegenetics.util.ProgressListener;
import net.maizegenetics.util.Tuple;
import org.apache.log4j.Logger;
/**
*
* @author Terry Casstevens
*/
public class GCTADistanceMatrix {
private static final Logger myLogger = Logger.getLogger(GCTADistanceMatrix.class);
private GCTADistanceMatrix() {
// utility
}
/**
* Compute Normalized_IBS (GCTA) kinship for all pairs of taxa. Missing
* sites are ignored.
* http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014363/pdf/main.pdf
* Equation-3
*
* @param genotype Genotype Table used to compute kinship
*
* @return GCTA Kinship Matrix
*/
public static DistanceMatrix getInstance(GenotypeTable genotype) {
return getInstance(genotype, null);
}
/**
* Same as other getInstance() but reports progress.
*
* @param genotype Genotype Table used to compute kinship
* @param listener Progress listener
*
* @return GCTA Kinship Matrix
*/
public static DistanceMatrix getInstance(GenotypeTable genotype, ProgressListener listener) {
return computeGCTADistances(genotype, listener);
}
private static DistanceMatrix computeGCTADistances(GenotypeTable genotype, ProgressListener listener) {
int numTaxa = genotype.numberOfTaxa();
long time = System.currentTimeMillis();
//
// Sets up parellel stream to divide up sites for processing.
// Also reduces the distance sums and site counters into one instance.
//
Optional optional = stream(genotype, listener).reduce((CountersDistances t, CountersDistances u) -> {
t.addAll(u);
return t;
});
if (!optional.isPresent()) {
return null;
}
CountersDistances counters = optional.get();
int[] counts = counters.myCounters;
float[] distances = counters.myDistances;
//
// This does the final division of the site counts into
// the distance sums.
//
GeneralAnnotationStorage.Builder annotations = GeneralAnnotationStorage.getBuilder();
annotations.addAnnotation(DistanceMatrixBuilder.MATRIX_TYPE, KinshipPlugin.KINSHIP_METHOD.Normalized_IBS.toString());
DistanceMatrixBuilder builder = DistanceMatrixBuilder.getInstance(genotype.taxa());
builder.annotation(annotations.build());
int index = 0;
for (int t = 0; t < numTaxa; t++) {
for (int i = t; i < numTaxa; i++) {
builder.set(t, i, distances[index] / (double) counts[index]);
builder.setCount(t, i, counts[index]);
index++;
}
}
myLogger.info("GCTADistanceMatrix: computeGCTADistances time: " + (System.currentTimeMillis() - time) / 1000 + " seconds");
return builder.build();
}
public static DistanceMatrix subtractGCTADistance(DistanceMatrixWithCounts[] matrices, DistanceMatrixWithCounts superMatrix, ProgressListener listener) {
int numTaxa = superMatrix.numberOfTaxa();
String matrixType = superMatrix.annotations().getTextAnnotation(DistanceMatrixBuilder.MATRIX_TYPE)[0];
if (!matrixType.equals(KinshipPlugin.KINSHIP_METHOD.Normalized_IBS.toString())) {
throw new IllegalArgumentException("subtractGCTADistance: superset matrix must be matrix type: " + KinshipPlugin.KINSHIP_METHOD.Normalized_IBS.toString());
}
for (DistanceMatrix current : matrices) {
int currentNumTaxa = current.numberOfTaxa();
if (currentNumTaxa != numTaxa) {
throw new IllegalArgumentException("subtractGCTADistance: subset and superset must have same number of taxa.");
}
String[] currentMatrixType = current.annotations().getTextAnnotation(DistanceMatrixBuilder.MATRIX_TYPE);
if (currentMatrixType.length == 0) {
throw new IllegalArgumentException("subtractGCTADistance: subset matrix must be created with a more recent build of Tassel that adds neccessary annotations to the matrix");
}
if (!matrixType.equals(currentMatrixType[0])) {
throw new IllegalArgumentException("subtractGCTADistance: subset matrix must be matrix type: " + KinshipPlugin.KINSHIP_METHOD.Normalized_IBS.toString());
}
}
TaxaList superTaxaList = superMatrix.getTaxaList();
for (DistanceMatrix current : matrices) {
TaxaList subsetTaxaList = current.getTaxaList();
for (int t = 0; t < numTaxa; t++) {
if (!superTaxaList.get(t).equals(subsetTaxaList.get(t))) {
throw new IllegalArgumentException("subtractGCTADistance: superset taxon: " + superTaxaList.get(t).getName() + " doesn't match subset taxon: " + subsetTaxaList.taxaName(t));
}
}
}
DistanceMatrixBuilder builder = DistanceMatrixBuilder.getInstance(superTaxaList);
//
// This does the final division of the site counts into
// the distance sums.
//
int numMatrices = matrices.length;
GeneralAnnotationStorage.Builder resultAnnotations = GeneralAnnotationStorage.getBuilder();
resultAnnotations.addAnnotation(DistanceMatrixBuilder.MATRIX_TYPE, KinshipPlugin.KINSHIP_METHOD.Normalized_IBS.toString());
builder.annotation(resultAnnotations.build());
for (int t = 0; t < numTaxa; t++) {
for (int i = 0, n = numTaxa - t; i < n; i++) {
int resultCount = superMatrix.getCount(t, t + i);
double resultValue = superMatrix.getDistance(t, t + i) * (double) resultCount;
for (int j = 0; j < numMatrices; j++) {
resultValue -= (matrices[j].getDistance(t, t + i) * matrices[j].getCount(t, t + i));
resultCount -= matrices[j].getCount(t, t + i);
}
builder.set(t, t + i, resultValue / (double) resultCount);
builder.setCount(t, t + i, resultCount);
}
}
return builder.build();
}
public static DistanceMatrix addGCTADistance(DistanceMatrixWithCounts[] matrices, ProgressListener listener) {
int numTaxa = matrices[0].numberOfTaxa();
String matrixType = matrices[0].annotations().getTextAnnotation(DistanceMatrixBuilder.MATRIX_TYPE)[0];
if (!matrixType.equals(KinshipPlugin.KINSHIP_METHOD.Normalized_IBS.toString())) {
throw new IllegalArgumentException("addGCTADistance: superset matrix must be matrix type: " + KinshipPlugin.KINSHIP_METHOD.Normalized_IBS.toString());
}
for (int i = 1; i < matrices.length; i++) {
DistanceMatrix current = matrices[i];
int currentNumTaxa = current.numberOfTaxa();
if (currentNumTaxa != numTaxa) {
throw new IllegalArgumentException("addGCTADistance: all matrices must have same number of taxa.");
}
String[] currentMatrixType = current.annotations().getTextAnnotation(DistanceMatrixBuilder.MATRIX_TYPE);
if (currentMatrixType.length == 0) {
throw new IllegalArgumentException("addGCTADistance: matrix must be created with a more recent build of Tassel that adds neccessary annotations to the matrix");
}
if (!matrixType.equals(currentMatrixType[0])) {
throw new IllegalArgumentException("addGCTADistance: matrix must be matrix type: " + KinshipPlugin.KINSHIP_METHOD.Normalized_IBS.toString());
}
}
TaxaList superTaxaList = matrices[0].getTaxaList();
for (int i = 1; i < matrices.length; i++) {
DistanceMatrix current = matrices[i];
TaxaList subsetTaxaList = current.getTaxaList();
for (int t = 0; t < numTaxa; t++) {
if (!superTaxaList.get(t).equals(subsetTaxaList.get(t))) {
throw new IllegalArgumentException("addGCTADistance: superset taxon: " + superTaxaList.get(t).getName() + " doesn't match subset taxon: " + subsetTaxaList.taxaName(t));
}
}
}
DistanceMatrixBuilder builder = DistanceMatrixBuilder.getInstance(superTaxaList);
//
// This does the final division of the site counts into
// the distance sums.
//
int numMatrices = matrices.length;
GeneralAnnotationStorage.Builder resultAnnotations = GeneralAnnotationStorage.getBuilder();
resultAnnotations.addAnnotation(DistanceMatrixBuilder.MATRIX_TYPE, KinshipPlugin.KINSHIP_METHOD.Normalized_IBS.toString());
builder.annotation(resultAnnotations.build());
for (int t = 0; t < numTaxa; t++) {
for (int i = 0, n = numTaxa - t; i < n; i++) {
int resultCount = 0;
double resultValue = 0.0;
for (int j = 0; j < numMatrices; j++) {
resultValue += (matrices[j].getDistance(t, t + i) * matrices[j].getCount(t, t + i));
resultCount += matrices[j].getCount(t, t + i);
}
builder.set(t, t + i, resultValue / (double) resultCount);
builder.setCount(t, t + i, resultCount);
}
}
return builder.build();
}
protected static void fireProgress(int percent, ProgressListener listener) {
if (listener != null) {
if (percent > 100) {
percent = 100;
}
listener.progress(percent, null);
}
}
//
// Each CPU thread (process) creates an instance of this class
// to acculate terms of the GCTA equation and the number of
// sites involved for each pair-wise calculation. These are
// combined with addAll() to result in one instance at the end.
//
private static class CountersDistances {
private final int[] myCounters;
private final float[] myDistances;
private final int myNumTaxa;
public CountersDistances(int numTaxa) {
myNumTaxa = numTaxa;
myCounters = new int[myNumTaxa * (myNumTaxa + 1) / 2];
myDistances = new float[myNumTaxa * (myNumTaxa + 1) / 2];
}
public void addAll(CountersDistances counters) {
float[] otherDistances = counters.myDistances;
for (int t = 0, n = myCounters.length; t < n; t++) {
myDistances[t] += otherDistances[t];
}
otherDistances = null;
int[] otherCounters = counters.myCounters;
for (int t = 0, n = myCounters.length; t < n; t++) {
myCounters[t] += otherCounters[t];
}
}
}
//
// This pre-calculates the number of occurances of the major allele
// for all possible diploid allele values. Numbers 0 through 7
// represent A, C, G, T, -, +, N respectively. First three bits
// codes the major allele. Remaining six bits codes the diploid
// allele values. The stored counts are encodings. Value 7 (bits 111) means
// it's not a comparable combination because either major allele
// is unknown or the diploid allele value is unknown.
// Code 1 (bits 001) is zero count.
// Code 2 (bits 010) is one count.
// Code 4 (bits 100) is two count.
//
private static final byte[] PRECALCULATED_COUNTS = new byte[512];
static {
for (int major = 0; major < 8; major++) {
for (int a = 0; a < 8; a++) {
for (int b = 0; b < 8; b++) {
int temp = (major << 6) | (a << 3) | b;
if ((major == 7) || ((a == 7) && (b == 7))) {
PRECALCULATED_COUNTS[temp] = 7;
} else if (a == major) {
if (b == major) {
PRECALCULATED_COUNTS[temp] = 4;
} else {
PRECALCULATED_COUNTS[temp] = 2;
}
} else if (b == major) {
PRECALCULATED_COUNTS[temp] = 2;
} else {
PRECALCULATED_COUNTS[temp] = 1;
}
}
}
}
}
//
// This pre-calculates the number of sites involved in a GCTA pair-wise
// comparison. Counts are the number of sites involved in the
// calculation (up to 5 sites).
// Count value of 7 is coded when diploid allele value is
// GenotypeTable.UNKNOWN_DIPLOID_ALLELE. Any pair-wise comparison when
// either taxa has GenotypeTable.UNKNOWN_DIPLOID_ALLELE at a given site,
// is not involved in the calulation. The index of this array represents
// every bitwise OR combination of major allele count encoding (1, 2, 4) and UNKNOWN (7)
// for five consecutive sites. Each three bits encodes two counts.
// Those three bits times five sites equals 32768 combinations.
// Code 001 - both counts zero
// Code 011 - one count zero, one count one
// Code 010 - both counts one
// Code 110 - one count one, one count two
// Code 100 - both counts two
// Code 101 - one count zero, one count two
//
private static final byte[] INCREMENT = new byte[32768];
static {
for (int a = 1; a < 8; a++) {
int temp = a << 12;
for (int b = 1; b < 8; b++) {
int temp2 = b << 9;
for (int c = 1; c < 8; c++) {
int temp3 = c << 6;
for (int d = 1; d < 8; d++) {
int temp4 = d << 3;
for (int e = 1; e < 8; e++) {
int incrementIndex = temp | temp2 | temp3 | temp4 | e;
if (a != 7) {
INCREMENT[incrementIndex]++;
}
if (b != 7) {
INCREMENT[incrementIndex]++;
}
if (c != 7) {
INCREMENT[incrementIndex]++;
}
if (d != 7) {
INCREMENT[incrementIndex]++;
}
if (e != 7) {
INCREMENT[incrementIndex]++;
}
}
}
}
}
}
}
private static final int NUM_CORES_TO_USE = TasselPrefs.getMaxThreads();
//
// Used to report progress. This is not thread-safe but
// works well enough for this purpose.
//
private static int myNumSitesProcessed = 0;
//
// Creates stream from GCTASiteSpliterator and Genotype Table
//
private static Stream stream(GenotypeTable genotypes, ProgressListener listener) {
myNumSitesProcessed = 0;
return StreamSupport.stream(new GCTASiteSpliterator(genotypes, 0, genotypes.numberOfSites(), listener), true);
}
//
// Spliterator that splits the sites into halves each time for
// processing.
//
static class GCTASiteSpliterator implements Spliterator {
private int myCurrentSite;
private final int myFence;
private final GenotypeTable myGenotypes;
private final int myNumTaxa;
private final int myNumSites;
private final ProgressListener myProgressListener;
private final int myMinSitesToProcess;
private final int myNumSitesPerBlockForProgressReporting;
GCTASiteSpliterator(GenotypeTable genotypes, int currentIndex, int fence, ProgressListener listener) {
myGenotypes = genotypes;
myNumTaxa = myGenotypes.numberOfTaxa();
myNumSites = myGenotypes.numberOfSites();
myCurrentSite = currentIndex;
myFence = fence;
myProgressListener = listener;
myMinSitesToProcess = Math.max(myNumSites / NUM_CORES_TO_USE, 1000);
myNumSitesPerBlockForProgressReporting = (myFence - myCurrentSite) / 10;
}
@Override
public void forEachRemaining(Consumer super CountersDistances> action) {
CountersDistances result = new CountersDistances(myNumTaxa);
int[] counts = result.myCounters;
float[] distances = result.myDistances;;
float[] answer1 = new float[32768];
float[] answer2 = new float[32768];
float[] answer3 = new float[32768];
for (; myCurrentSite < myFence;) {
int currentBlockFence = Math.min(myCurrentSite + myNumSitesPerBlockForProgressReporting, myFence);
int numSitesProcessed = currentBlockFence - myCurrentSite;
for (; myCurrentSite < currentBlockFence;) {
int[] numSites = new int[1];
//
// Pre-calculates possible terms and gets counts for
// three blocks for five sites.
//
Tuple firstBlock = getBlockOfSites(myCurrentSite, numSites);
float[] possibleTerms = firstBlock.y;
short[] majorCount1 = firstBlock.x;
Tuple secondBlock = getBlockOfSites(myCurrentSite + numSites[0], numSites);
float[] possibleTerms2 = secondBlock.y;
short[] majorCount2 = secondBlock.x;
Tuple thirdBlock = getBlockOfSites(myCurrentSite + numSites[0], numSites);
float[] possibleTerms3 = thirdBlock.y;
short[] majorCount3 = thirdBlock.x;
myCurrentSite += numSites[0];
//
// Using possible terms, calculates all possible answers
// for each site block.
//
for (int i = 0; i < 32768; i++) {
answer1[i] = possibleTerms[(i & 0x7000) >>> 12] + possibleTerms[((i & 0xE00) >>> 9) | 0x8] + possibleTerms[((i & 0x1C0) >>> 6) | 0x10] + possibleTerms[((i & 0x38) >>> 3) | 0x18] + possibleTerms[(i & 0x7) | 0x20];
answer2[i] = possibleTerms2[(i & 0x7000) >>> 12] + possibleTerms2[((i & 0xE00) >>> 9) | 0x8] + possibleTerms2[((i & 0x1C0) >>> 6) | 0x10] + possibleTerms2[((i & 0x38) >>> 3) | 0x18] + possibleTerms2[(i & 0x7) | 0x20];
answer3[i] = possibleTerms3[(i & 0x7000) >>> 12] + possibleTerms3[((i & 0xE00) >>> 9) | 0x8] + possibleTerms3[((i & 0x1C0) >>> 6) | 0x10] + possibleTerms3[((i & 0x38) >>> 3) | 0x18] + possibleTerms3[(i & 0x7) | 0x20];
}
//
// Iterates through all pair-wise combinations of taxa adding
// distance comparisons and site counts.
//
int index = 0;
for (int firstTaxa = 0; firstTaxa < myNumTaxa; firstTaxa++) {
//
// Can skip inter-loop if all fifteen sites for first
// taxon is Unknown diploid allele values
//
if ((majorCount1[firstTaxa] != 0x7FFF) || (majorCount2[firstTaxa] != 0x7FFF) || (majorCount3[firstTaxa] != 0x7FFF)) {
for (int secondTaxa = firstTaxa; secondTaxa < myNumTaxa; secondTaxa++) {
//
// Combine first taxon's major allele counts with
// second taxon's major allele counts to
// create index into pre-calculated answers
// and site counts.
//
distances[index] += answer1[majorCount1[firstTaxa] | majorCount1[secondTaxa]] + answer2[majorCount2[firstTaxa] | majorCount2[secondTaxa]] + answer3[majorCount3[firstTaxa] | majorCount3[secondTaxa]];
counts[index] += INCREMENT[majorCount1[firstTaxa] | majorCount1[secondTaxa]] + INCREMENT[majorCount2[firstTaxa] | majorCount2[secondTaxa]] + INCREMENT[majorCount3[firstTaxa] | majorCount3[secondTaxa]];
index++;
}
} else {
index += myNumTaxa - firstTaxa;
}
}
}
myNumSitesProcessed += numSitesProcessed;
fireProgress((int) ((double) myNumSitesProcessed / (double) myNumSites * 100.0), myProgressListener);
}
action.accept(result);
}
private static final int NUM_SITES_PER_BLOCK = 5;
private Tuple getBlockOfSites(int currentSite, int[] numSites) {
int currentSiteNum = 0;
//
// This hold possible terms for the GCTA summation given
// site's major allele frequency. First three bits
// identifies relative site (0, 1, 2, 3, 4). Remaining three bits
// the major allele counts encoding.
//
float[] possibleTerms = new float[40];
//
// This holds count of major allele for each taxa.
// Each short holds count (0, 1, 2, 3) for all four sites
// at given taxon. The counts are stored in four bits each.
// This leaves the two higher bits for each empty for shifting.
//
short[] majorCount = new short[myNumTaxa];
//
// This initializes the count encodings to 0x7FFF. That means
// diploid allele values for the five sites are Unknown.
//
Arrays.fill(majorCount, (short) 0x7FFF);
while ((currentSiteNum < NUM_SITES_PER_BLOCK) && (currentSite < myFence)) {
byte[] genotypes = myGenotypes.genotypeAllTaxa(currentSite);
int[][] alleleCounts = AlleleFreqCache.allelesSortedByFrequencyNucleotide(genotypes);
byte major = AlleleFreqCache.majorAllele(alleleCounts);
float majorFreq = (float) AlleleFreqCache.majorAlleleFrequency(alleleCounts);
float majorFreqTimes2 = majorFreq * 2.0f;
float denominatorTerm = majorFreqTimes2 * (1.0f - majorFreq);
//
// Temporarily stores component terms of equation for
// individual major allele counts (0, 1, 2)
//
float[] term = new float[3];
//
// If major allele is Unknown or major allele frequency
// equals 1.0 (resulting in denominator 0.0), the entire
// site is skipped.
//
if ((major != GenotypeTable.UNKNOWN_ALLELE) && (denominatorTerm != 0.0)) {
term[0] = 0.0f - majorFreqTimes2;
term[1] = 1.0f - majorFreqTimes2;
term[2] = 2.0f - majorFreqTimes2;
//
// Pre-calculates all possible terms of the summation
// for this current site. Counts (0,0; 0,1; 0,2; 1,1; 1,2; 2,2)
//
int siteNumIncrement = currentSiteNum * 8;
possibleTerms[siteNumIncrement + 1] = term[0] * term[0] / denominatorTerm;
possibleTerms[siteNumIncrement + 3] = term[0] * term[1] / denominatorTerm;
possibleTerms[siteNumIncrement + 5] = term[0] * term[2] / denominatorTerm;
possibleTerms[siteNumIncrement + 2] = term[1] * term[1] / denominatorTerm;
possibleTerms[siteNumIncrement + 6] = term[1] * term[2] / denominatorTerm;
possibleTerms[siteNumIncrement + 4] = term[2] * term[2] / denominatorTerm;
//
// Records major allele count encodings for current site in
// three bits.
//
int temp = (major & 0x7) << 6;
int shift = (NUM_SITES_PER_BLOCK - currentSiteNum - 1) * 3;
int mask = ~(0x7 << shift) & 0x7FFF;
for (int i = 0; i < myNumTaxa; i++) {
majorCount[i] = (short) (majorCount[i] & (mask | PRECALCULATED_COUNTS[temp | ((genotypes[i] & 0x70) >>> 1) | (genotypes[i] & 0x7)] << shift));
}
currentSiteNum++;
}
currentSite++;
numSites[0]++;
}
return new Tuple<>(majorCount, possibleTerms);
}
@Override
public boolean tryAdvance(Consumer super CountersDistances> action) {
if (myCurrentSite < myFence) {
forEachRemaining(action);
return true;
} else {
return false;
}
}
@Override
/**
* Splits sites
*/
public Spliterator trySplit() {
int lo = myCurrentSite;
int mid = lo + myMinSitesToProcess;
if (mid < myFence) {
myCurrentSite = mid;
return new GCTASiteSpliterator(myGenotypes, lo, mid, myProgressListener);
} else {
return null;
}
}
@Override
public long estimateSize() {
return (long) (myFence - myCurrentSite);
}
@Override
public int characteristics() {
return IMMUTABLE;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy