net.maizegenetics.analysis.modelfitter.AddPlusDomModelEffect Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.modelfitter;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
import net.maizegenetics.stats.linearmodels.CovariateModelEffect;
import net.maizegenetics.stats.linearmodels.ModelEffect;
import org.apache.log4j.Logger;
import java.util.Arrays;
/**
* A ModelEffect that takes an AdditiveSite as an argument and uses the additiveCovariate
* from that object to compute a covariate representing dominance. In general, the AdditiveSite will be supplied as the id,
* although that is not a requirement. The dominance values are calculated as 1 - abs(x - 1) where x is the addivitive value.
* The values of x are expected to be 0, 1, 2, where 0 and 1 are homozygous genotypes and 1 is the het.
*
*/
public class AddPlusDomModelEffect implements ModelEffect {
private AdditiveSite id;
private final double[] addCovariate;
private final double[] domCovariate;
private final CovariateModelEffect addModelEffect;
private final CovariateModelEffect domModelEffect;
private final DoubleMatrix X;
private final double delta = 1e-8;
public static double MIN_HETS = 20;
public static boolean IMPUTE_DOM = true;
public AddPlusDomModelEffect(AdditiveSite id, AdditiveSite addSite) {
this(id, addSite.getCovariate());
}
public AddPlusDomModelEffect(AdditiveSite id, double[] additiveCovariate) {
this.id = id;
addCovariate = additiveCovariate;
double lower = 1 - delta;
double upper = 1 + delta;
if (IMPUTE_DOM) domCovariate = Arrays.stream(addCovariate).map(add -> 1.0 - Math.abs(add - 1)).toArray();
else domCovariate = Arrays.stream(addCovariate).map(add -> (add > lower && add < upper) ? 1.0 : 0.0).toArray();
double domSum = Arrays.stream(domCovariate).sum();
addModelEffect = new CovariateModelEffect(addCovariate, id);
if (domSum >= MIN_HETS) {
domModelEffect = new CovariateModelEffect(domCovariate, id);
X = addModelEffect.getX().concatenate(domModelEffect.getX(), false);
} else {
domModelEffect = null;
X = addModelEffect.getX();
}
}
@Override
public Object getID() {
return id;
}
@Override
public void setID(Object id) {
this.id = (AdditiveSite) id;
}
@Override
public int getSize() {
return addCovariate.length;
}
@Override
public DoubleMatrix getX() {
return X;
}
@Override
public DoubleMatrix getXtX() {
return getX().crossproduct();
}
@Override
public DoubleMatrix getXty(double[] y) {
return getX().crossproduct(DoubleMatrixFactory.DEFAULT.make(y.length, 1, y));
}
@Override
public DoubleMatrix getyhat(DoubleMatrix beta) {
return getX().crossproduct(beta);
}
@Override
public DoubleMatrix getyhat(double[] beta) {
return getyhat(DoubleMatrixFactory.DEFAULT.make(1, beta.length, beta));
}
@Override
public int[] getLevelCounts() {
if (domModelEffect == null) {
return new int[]{addCovariate.length};
} else return new int[]{addCovariate.length, domCovariate.length};
}
@Override
public int getNumberOfLevels() {
if (domModelEffect == null) {
return 1;
} else return 2;
}
@Override
public int getEffectSize() {
return getNumberOfLevels();
}
@Override
public ModelEffect getCopy() {
return new AddPlusDomModelEffect(id.copy(), Arrays.copyOf(addCovariate, addCovariate.length));
}
@Override
public ModelEffect getSubSample(int[] sample) {
double[] subsample = new double[sample.length];
for (int i = 0; i < sample.length; i++) {
subsample[i] = addCovariate[sample[i]];
}
return new AddPlusDomModelEffect(id, subsample);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy