net.maizegenetics.analysis.modelfitter.AdditiveResidualForwardRegression Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.modelfitter;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.StreamSupport;
import org.apache.commons.math3.distribution.FDistribution;
import net.maizegenetics.phenotype.GenotypePhenotype;
import net.maizegenetics.stats.linearmodels.CovariateModelEffect;
import net.maizegenetics.stats.linearmodels.FactorModelEffect;
import net.maizegenetics.stats.linearmodels.ModelEffect;
import net.maizegenetics.stats.linearmodels.SweepFastLinearModel;
public class AdditiveResidualForwardRegression extends AbstractForwardRegression {
double[] residuals;
public AdditiveResidualForwardRegression(GenotypePhenotype data) {
super(data);
}
@Override
public void fitModel() {
int maxModelSize = myModel.size() + maxVariants;
int step = 0;
SweepFastLinearModel sflm = new SweepFastLinearModel(myModel, y);
residuals = sflm.getResiduals().to1DArray();
while (step < maxModelSize && forwardStepParallel(true, step)) {
step++;
}
}
@Override
public void fitModelForSubsample(int[] subSample, int iteration) {
//create myModel from myBaseModel for this subsample
myModel = myBaseModel.stream().map(me -> me.getSubSample(subSample)).collect(Collectors.toList());
double[] ySubSample = Arrays.stream(subSample).mapToDouble(i -> y[i]).toArray();
SweepFastLinearModel sflm = new SweepFastLinearModel(myModel, ySubSample);
residuals = sflm.getResiduals().to1DArray();
int maxModelSize = myModel.size() + maxVariants;
int step = 0;
while (step < maxModelSize && forwardStepParallel(subSample, true, iteration, step)) {
step++;
}
}
private boolean forwardStepParallel(boolean doParallel, int step) {
int nsamples = residuals.length;
ModelEffect meanMe = new FactorModelEffect(new int[nsamples], false, "mean");
List residualModel = Arrays.asList(meanMe);
AdditiveSite bestSite = StreamSupport.stream(new ForwardStepAdditiveSpliterator(siteList, residualModel, residuals), doParallel)
.max((a,b) -> a.compareTo(b)).get();
ModelEffect siteEffect = new CovariateModelEffect(bestSite.getCovariate());
residualModel.add(siteEffect);
SweepFastLinearModel sflm = new SweepFastLinearModel(residualModel, residuals);
double[] errorSSdf = sflm.getResidualSSdf();
double[] siteSSdf = sflm.getIncrementalSSdf(myModel.size() - 1);
double F,p;
if (siteSSdf[1] < FDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY || errorSSdf[0] < FDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY) {
F = Double.NaN;
p = Double.NaN;
} else {
F = siteSSdf[0] / siteSSdf[1] / errorSSdf[0] * errorSSdf[1];
p = 1 - (new FDistribution(siteSSdf[1], errorSSdf[1]).cumulativeProbability(F));
}
if (!Double.isNaN(p) && p <= enterLimit) {
addVariant(bestSite, p, 0, step);
residuals = sflm.getResiduals().to1DArray();
return true;
}
else return false;
}
private boolean forwardStepParallel(int[] subset, boolean doParallel, int iteration, int step) {
int nsamples = residuals.length;
ModelEffect meanMe = new FactorModelEffect(new int[nsamples], false, "mean");
List residualModel = Arrays.asList(meanMe);
AdditiveSite bestSite = StreamSupport.stream(new ForwardStepSubsettingAdditiveSpliterator(siteList, residualModel, residuals, subset), doParallel)
.max((a,b) -> a.compareTo(b)).get();
ModelEffect siteEffect = new CovariateModelEffect(bestSite.getCovariate(subset));
residualModel.add(siteEffect);
SweepFastLinearModel sflm = new SweepFastLinearModel(residualModel, residuals);
double[] errorSSdf = sflm.getResidualSSdf();
double[] siteSSdf = sflm.getIncrementalSSdf(myModel.size() - 1);
double F,p;
if (siteSSdf[1] < FDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY || errorSSdf[0] < FDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY) {
F = Double.NaN;
p = Double.NaN;
} else {
F = siteSSdf[0] / siteSSdf[1] / errorSSdf[0] * errorSSdf[1];
p = 1 - (new FDistribution(siteSSdf[1], errorSSdf[1]).cumulativeProbability(F));
}
if (!Double.isNaN(p) && p <= enterLimit) {
//columns in myFittedVariants: "trait","SnpID","Chr","Pos", "p-value", "-log10p"
addVariant(bestSite, p, iteration, step);
residuals = sflm.getResiduals().to1DArray();
return true;
}
else return false;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy