net.maizegenetics.analysis.numericaltransform.BoxCoxTransformation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.analysis.numericaltransform;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Random;
import java.util.stream.Collectors;
import org.apache.commons.math3.distribution.NormalDistribution;
import org.apache.commons.math3.stat.descriptive.moment.Mean;
import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation;
import org.apache.commons.math3.stat.inference.KolmogorovSmirnovTest;
import net.maizegenetics.phenotype.Phenotype;
import net.maizegenetics.phenotype.PhenotypeAttribute;
import net.maizegenetics.phenotype.PhenotypeUtils;
import net.maizegenetics.phenotype.Phenotype.ATTRIBUTE_TYPE;
import net.maizegenetics.taxa.Taxon;
public class BoxCoxTransformation {
public Phenotype applyBoxCox(Phenotype pheno, boolean addSmallVal, long randomSeed,double startLambda, double endLambda, double stepLambda) throws Exception{
//Get the variable names and put it into a list
ArrayList attributes = (ArrayList)pheno.attributeListOfType(ATTRIBUTE_TYPE.data);
//get the covariates
attributes.addAll((ArrayList)pheno.attributeListOfType(ATTRIBUTE_TYPE.covariate));
ArrayList phenoNames = (ArrayList)attributes.stream().map((phenoAttr) -> phenoAttr.name()).collect(Collectors.toList());
//Loop through the List get the unique names
ArrayList taxonList = (ArrayList)pheno.taxaAttribute().allTaxaAsList();
ArrayList uniqueTaxaNames =(ArrayList) pheno.taxaAttribute().allTaxaAsList().stream()
.map((taxon) -> taxon.getName()).collect(Collectors.toList());
//loop through the all the values and find the minimum value
double minValue = Double.MAX_VALUE;
HashMap> phenoToDataList = new HashMap>();
for(String varName : phenoNames) {
ArrayList currentPhenoValues = new ArrayList();
for(int i = 0; i < taxonList.size(); i++) {
double currentValue = ((Float)pheno.value(i,pheno.attributeIndexForName(varName))).doubleValue();
currentPhenoValues.add(currentValue);
if( currentValue < minValue && currentValue > 0) {
minValue = currentValue;
}
}
phenoToDataList.put(varName,currentPhenoValues);
}
if(!addSmallVal) {
minValue = 0.0;
}
else {
System.out.println(minValue);
}
//Loop through the Phenotype Attributes and Box Cox them
double[][] fullTransformedVals = new double[uniqueTaxaNames.size()][phenoNames.size()];
for(int phenoNameIndex = 0; phenoNameIndex < phenoNames.size(); phenoNameIndex++){
double[] boxCoxValues = computeBoxCox(phenoToDataList.get(phenoNames.get(phenoNameIndex)),minValue,randomSeed,startLambda, endLambda, stepLambda);
for(int taxaIndex = 0; taxaIndex < uniqueTaxaNames.size(); taxaIndex++) {
fullTransformedVals[taxaIndex][phenoNameIndex] = boxCoxValues[taxaIndex];
}
}
//Create 2-D ArrayList to store all of the transformed values
ArrayList> avgValues = new ArrayList>();
for(int taxaCounter = 0; taxaCounter < fullTransformedVals.length; taxaCounter++) {
ArrayList currentTaxaVals = new ArrayList();
for(int phenoCounter = 0; phenoCounter < fullTransformedVals[taxaCounter].length; phenoCounter++) {
currentTaxaVals.add(fullTransformedVals[taxaCounter][phenoCounter]);
}
avgValues.add(currentTaxaVals);
}
ArrayList originalTypes = new ArrayList<>();
for(int i = 0; i < pheno.attributeListCopy().size(); i++) {
originalTypes.add(pheno.attributeType(i));
}
try {
//Take the taxa List, the variable name list and the matrix and send to PhenoUtils package to get a phenotype back
return PhenotypeUtils.createPhenotypeFromTransform(uniqueTaxaNames, phenoNames, avgValues,pheno.name()+"_BoxCoxTransformed",originalTypes);
}
catch(Exception e) {
throw e;
}
}
public static double[] computeBoxCox(ArrayList phenotypeValues,double minimumValue,long randomSeed, double startLambda, double endLambda, double stepLambda) {
//add in the small value if needed
//Select a random small value where 0 addedSmallPhenoValues = (ArrayList) phenotypeValues.stream().map((currentVal) -> {
return rand.nextDouble() * 0.5 * minimumValue + currentVal;
}).collect(Collectors.toList());
//Check attribute to make sure we have variation
if(!attributeHasVariation(addedSmallPhenoValues)) {
//if we dont we need to return the original value as box cox will not do anything
double[] valuesToReturn = new double[addedSmallPhenoValues.size()];
for(int i = 0; i < addedSmallPhenoValues.size(); i++) {
valuesToReturn[i] = addedSmallPhenoValues.get(i);
}
return valuesToReturn;
}
else {
//Loop through lambdas and compute the KST
double currentLambda = startLambda;
double[] currentValues = new double[addedSmallPhenoValues.size()];
double bestTestStat = Double.MAX_VALUE;
double bestMean = 0.0;
double bestStDev = 0.0;
//Loop through lambdas -5 to 5 increasing by .2 each time
for(double lambda = startLambda; lambda < endLambda; lambda += stepLambda) {
//create a new array to hold the values
double[] transformedValues = new double[addedSmallPhenoValues.size()];
//get the transformed values
for(int i = 0; i < addedSmallPhenoValues.size(); i++) {
transformedValues[i] = boxCoxTransform(addedSmallPhenoValues.get(i), lambda);
}
//Check to see how well it fits a normal distribution
//Use the following method
//
//Get Mean and standard deviation of the transformed data
//Create a Normal Distribution using these input params
//Use KolmogorovSmirnovTest to see how well the data fits the normal distribution
//Pick the one with the lowest values
StandardDeviation sdev = new StandardDeviation();
double sampleStandardDev = sdev.evaluate(transformedValues);
//calculate the mean
Mean meanObj = new Mean();
double meanVal = meanObj.evaluate(transformedValues);
//Skip this lambda if we have a negative sample standard deviation
if(sampleStandardDev<=0.0 || Double.isNaN(sampleStandardDev) || Double.isNaN(meanVal)) {
continue;
}
//Compute kst
NormalDistribution normDist = new NormalDistribution(meanVal, sampleStandardDev);
KolmogorovSmirnovTest kst = new KolmogorovSmirnovTest();
//Get the statistic
double testStat = kst.kolmogorovSmirnovStatistic(normDist, transformedValues);
//If it is less than our current best, we update the statistics
if(testStat < bestTestStat) {
currentLambda = lambda;
currentValues = transformedValues;
bestTestStat = testStat;
bestMean = meanVal;
bestStDev = sampleStandardDev;
}
}
return currentValues;
}
}
private static double boxCoxTransform(double value, double lambda) {
if(lambda == 0) {
//do the natural log
return Math.log(value);
}
else {
//Compute (value^lamdba - 1)/lambda
return (Math.pow(value, lambda) - 1.0)/lambda;
}
}
private static boolean attributeHasVariation(ArrayList phenoAttribute) {
double prevVal = phenoAttribute.get(0);
for(int i = 1; i < phenoAttribute.size(); i++) {
if(phenoAttribute.get(i) != prevVal) {
return true;
}
}
return false;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy