net.maizegenetics.matrixalgebra.Matrix.ColtDoubleMatrix Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.matrixalgebra.Matrix;
import cern.colt.matrix.DoubleFactory1D;
import cern.colt.matrix.DoubleFactory2D;
import cern.colt.matrix.DoubleMatrix2D;
import cern.colt.matrix.linalg.Algebra;
import cern.jet.math.Functions;
import net.maizegenetics.matrixalgebra.decomposition.ColtEigenvalueDecomposition;
import net.maizegenetics.matrixalgebra.decomposition.ColtSingularValueDecomposition;
import net.maizegenetics.matrixalgebra.decomposition.EigenvalueDecomposition;
import net.maizegenetics.matrixalgebra.decomposition.QRDecomposition;
import net.maizegenetics.matrixalgebra.decomposition.SingularValueDecomposition;
import net.maizegenetics.taxa.distance.DistanceMatrix;
public class ColtDoubleMatrix implements DoubleMatrix {
DoubleMatrix2D myMatrix;
public ColtDoubleMatrix(DoubleMatrix2D aMatrix) {
myMatrix = aMatrix;
}
public ColtDoubleMatrix(int row, int col) {
myMatrix = DoubleFactory2D.dense.make(row, col);
}
public ColtDoubleMatrix(int row, int col, double[] values) {
myMatrix = DoubleFactory2D.dense.make(values, row);
}
public ColtDoubleMatrix(int row, int col, double value) {
myMatrix = DoubleFactory2D.dense.make(row, col, value);
}
public ColtDoubleMatrix(double[][] values) {
myMatrix = DoubleFactory2D.dense.make(values);
}
public ColtDoubleMatrix(DistanceMatrix values) {
myMatrix = DoubleFactory2D.dense.make(values.getDistances());
}
public ColtDoubleMatrix(int size) {
myMatrix = DoubleFactory2D.dense.identity(size);
}
public ColtDoubleMatrix(double[] diagonal) {
myMatrix = DoubleFactory2D.dense.diagonal(DoubleFactory1D.dense.make(diagonal));
}
@Override
public double get(int row, int col) {
return myMatrix.getQuick(row, col);
}
@Override
public double getChecked(int row, int col) {
return myMatrix.get(row, col);
}
@Override
public void set(int row, int col, double value) {
myMatrix.setQuick(row, col, value);
}
@Override
public void setChecked(int row, int col, double value) {
myMatrix.set(row, col, value);
}
@Override
public DoubleMatrix transpose() {
return new ColtDoubleMatrix(myMatrix.viewDice().copy());
}
@Override
public DoubleMatrix mult(DoubleMatrix dm, boolean transpose,
boolean transposedm) {
DoubleMatrix2D B = ((ColtDoubleMatrix) dm).myMatrix;
return new ColtDoubleMatrix(myMatrix.zMult(B, null, 1.0, 0.0, transpose, transpose));
}
@Override
public DoubleMatrix multadd(DoubleMatrix A, DoubleMatrix B, double alpha,
double beta, boolean transpose, boolean transposeA) {
DoubleMatrix2D C = ((ColtDoubleMatrix) A).myMatrix;
DoubleMatrix2D D;
if (B == null) D = null;
else D = ((ColtDoubleMatrix) B).myMatrix;
DoubleMatrix2D result = myMatrix.zMult(C, D, alpha, beta, transpose, transposeA);
return new ColtDoubleMatrix(result);
}
@Override
public DoubleMatrix mult(DoubleMatrix dm) {
DoubleMatrix2D B = ((ColtDoubleMatrix) dm).myMatrix;
return new ColtDoubleMatrix(myMatrix.zMult(B, null));
}
@Override
public DoubleMatrix crossproduct() {
return new ColtDoubleMatrix(myMatrix.viewDice().zMult(myMatrix, null));
}
@Override
public DoubleMatrix crossproduct(DoubleMatrix dm) {
DoubleMatrix2D B = ((ColtDoubleMatrix) dm).myMatrix;
return new ColtDoubleMatrix(myMatrix.viewDice().zMult(B, null));
}
@Override
public DoubleMatrix tcrossproduct() {
return new ColtDoubleMatrix(myMatrix.zMult(myMatrix.viewDice(), null));
}
@Override
public DoubleMatrix tcrossproduct(DoubleMatrix dm) {
DoubleMatrix2D B = ((ColtDoubleMatrix) dm).myMatrix;
return new ColtDoubleMatrix(myMatrix.zMult(B.viewDice(), null));
}
@Override
public DoubleMatrix concatenate(DoubleMatrix dm, boolean rows) {
DoubleMatrix2D B = ((ColtDoubleMatrix) dm).myMatrix;
if (rows) {
return new ColtDoubleMatrix(DoubleFactory2D.dense.appendRows(myMatrix, B));
} else {
return new ColtDoubleMatrix(DoubleFactory2D.dense.appendColumns(myMatrix, B));
}
}
@Override
public DoubleMatrix inverse() {
return new ColtDoubleMatrix(Algebra.DEFAULT.inverse(myMatrix));
}
@Override
public boolean invert() {
myMatrix = Algebra.DEFAULT.inverse(myMatrix);
return true;
}
@Override
public DoubleMatrix generalizedInverse() {
Algebra A = new Algebra();
boolean transposeMatrix = false;
cern.colt.matrix.linalg.SingularValueDecomposition svd;
if (myMatrix.rows() < myMatrix.columns()) {
transposeMatrix = true;
svd = new cern.colt.matrix.linalg.SingularValueDecomposition(myMatrix.viewDice());
} else {
svd = new cern.colt.matrix.linalg.SingularValueDecomposition(myMatrix);
}
DoubleMatrix2D invS = svd.getS();
//calculate the inverse of S, a diagonal matrix with rank(aMatrix) non-zero elements
int size = invS.rows();
int r = 0;
for (int i = 0; i < size; i++) {
if (Math.abs(invS.get(i, i)) > 1E-10) {
invS.set(i, i, 1 / invS.get(i, i));
r++;
}
else
invS.set(i, i, 0);
}
DoubleMatrix2D minv = A.mult(A.mult(svd.getV(), invS), A.transpose(svd.getU()));
if (transposeMatrix) return new ColtDoubleMatrix(minv.viewDice().copy());
return new ColtDoubleMatrix(minv);
}
@Override
public DoubleMatrix solve(DoubleMatrix Y) {
return new ColtDoubleMatrix(Algebra.DEFAULT.solve(myMatrix, ((ColtDoubleMatrix) Y).myMatrix));
}
@Override
public int numberOfRows() {
return myMatrix.rows();
}
@Override
public int numberOfColumns() {
return myMatrix.columns();
}
@Override
public DoubleMatrix row(int i) {
int[] rowIndex = new int[]{i};
return new ColtDoubleMatrix(myMatrix.viewSelection(rowIndex,null).viewDice().copy());
}
@Override
public DoubleMatrix column(int j) {
int[] colIndex = new int[]{j};
return new ColtDoubleMatrix(myMatrix.viewSelection(null, colIndex).copy());
}
@Override
public DoubleMatrix[] getXtXGM() {
DoubleMatrix[] result = new DoubleMatrix[3];
DoubleMatrix2D xtx = myMatrix.viewDice().zMult(myMatrix, null);
DoubleMatrix2D g = Algebra.DEFAULT.inverse(xtx);
DoubleMatrix2D m = DoubleFactory2D.dense.identity(myMatrix.rows());
DoubleMatrix2D xgxt = myMatrix.zMult(g.zMult(myMatrix.viewDice(), null), null);
m.assign(xgxt, Functions.minus);
result[0] = new ColtDoubleMatrix(xtx);
result[1] = new ColtDoubleMatrix(g);
result[2] = new ColtDoubleMatrix(m);
return result;
}
@Override
public DoubleMatrix copy() {
return new ColtDoubleMatrix(myMatrix.copy());
}
@Override
public EigenvalueDecomposition getEigenvalueDecomposition() {
return new ColtEigenvalueDecomposition(myMatrix);
}
@Override
public SingularValueDecomposition getSingularValueDecomposition() {
return new ColtSingularValueDecomposition(myMatrix);
}
@Override
public QRDecomposition getQRDecomposition() {
//TODO implement QRDecomposition
return null;
}
@Override
public DoubleMatrix minus(DoubleMatrix dm) {
DoubleMatrix2D B = ((ColtDoubleMatrix)dm).myMatrix;
return new ColtDoubleMatrix(myMatrix.copy().assign(B, Functions.minus));
}
@Override
public void minusEquals(DoubleMatrix dm) {
DoubleMatrix2D B = ((ColtDoubleMatrix)dm).myMatrix;
myMatrix.assign(B, Functions.minus);
}
@Override
public DoubleMatrix plus(DoubleMatrix dm) {
DoubleMatrix2D B = ((ColtDoubleMatrix)dm).myMatrix;
return new ColtDoubleMatrix(myMatrix.copy().assign(B, Functions.plus));
}
@Override
public void plusEquals(DoubleMatrix dm) {
DoubleMatrix2D B = ((ColtDoubleMatrix)dm).myMatrix;
myMatrix.assign(B, Functions.plus);
}
@Override
public DoubleMatrix scalarAdd(double s) {
DoubleMatrix2D S = DoubleFactory2D.dense.make(myMatrix.rows(), myMatrix.columns(), s);
return new ColtDoubleMatrix(S.assign(myMatrix, Functions.plus));
}
@Override
public void scalarAddEquals(double s) {
myMatrix.assign(Functions.plus(s));
}
@Override
public DoubleMatrix scalarMult(double s) {
return new ColtDoubleMatrix(myMatrix.copy().assign(Functions.mult(s)));
}
@Override
public void scalarMultEquals(double s) {
myMatrix.assign(Functions.mult(s));
}
@Override
public DoubleMatrix getSelection(int[] rows, int[] columns) {
return new ColtDoubleMatrix(myMatrix.viewSelection(rows,columns).copy());
}
@Override
public double rowSum(int row) {
return myMatrix.viewRow(row).aggregate(Functions.plus, Functions.identity);
}
@Override
public double columnSum(int column) {
return myMatrix.viewColumn(column).aggregate(Functions.plus, Functions.identity);
}
@Override
public int columnRank() {
return Algebra.DEFAULT.rank(myMatrix);
}
@Override
public DoubleMatrix generalizedInverseWithRank(int[] rank) {
double tol = 1e-10;
Algebra A = new Algebra();
boolean transposeMatrix = false;
if (myMatrix.rows() < myMatrix.columns()) {
transposeMatrix = true;
}
cern.colt.matrix.linalg.SingularValueDecomposition svd;
if (transposeMatrix) {
svd = new cern.colt.matrix.linalg.SingularValueDecomposition(myMatrix.viewDice());
} else {
svd = new cern.colt.matrix.linalg.SingularValueDecomposition(myMatrix);
}
DoubleMatrix2D invS = svd.getS();
//calculate the inverse of S, a diagonal matrix with rank(aMatrix) non-zero elements
int size = invS.rows();
int r = 0;
for (int i = 0; i < size; i++) {
if (Math.abs(invS.get(i, i)) > tol) {
invS.set(i, i, 1 / invS.get(i, i));
r++;
}
else
invS.set(i, i, 0);
}
rank[0] = r;
DoubleMatrix2D minv = A.mult(A.mult(svd.getV(), invS), A.transpose(svd.getU()));
if (transposeMatrix) minv = A.transpose(minv);
return new ColtDoubleMatrix(minv);
}
@Override
public double[] to1DArray() {
int nrows = myMatrix.rows();
int ncols = myMatrix.columns();
int nelements = nrows * ncols;
double[] array = new double[nelements];
int count = 0;
for (int r = 0; r < nrows; r++) {
for (int c = 0; c < ncols; c++) {
array[count++] = myMatrix.getQuick(r, c);
}
}
return array;
}
@Override
public double[][] toArray() {
return myMatrix.toArray();
}
@Override
public String toString() {
return myMatrix.toString();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy