net.maizegenetics.stats.linearmodels.CovariateModelEffect Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tassel Show documentation
Show all versions of tassel Show documentation
TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage
disequilibrium.
package net.maizegenetics.stats.linearmodels;
import java.util.Arrays;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
public class CovariateModelEffect implements ModelEffect {
private final double[] covariate;
private final int size;
private final double sum;
private final double sumsq;
private Object id = null;
public CovariateModelEffect(double[] covariate) {
this.covariate = covariate;
size = covariate.length;
double s = 0;
double ss = 0;
for (double cov : covariate) {
s += cov;
ss += cov * cov;
}
sum = s;
sumsq = ss;
}
public CovariateModelEffect(double[] covariate, Object id) {
this(covariate);
this.id = id;
}
private CovariateModelEffect(double[] covariate, int size, double sum, double sumsq, Object id) {
this.covariate = Arrays.copyOf(covariate, covariate.length);
this.size = size;
this.sum = sum;
this.sumsq = sumsq;
this.id = id;
}
@Override
public Object getID() {
return id;
}
@Override
public int getNumberOfLevels() {
return 1;
}
@Override
public void setID(Object id) {
this.id = id;
}
@Override
public int[] getLevelCounts() {
return new int[] { size };
}
@Override
public int getSize() {
return covariate.length;
}
@Override
public DoubleMatrix getX() {
return DoubleMatrixFactory.DEFAULT.make(covariate.length, 1, covariate);
}
@Override
public DoubleMatrix getXtX() {
return DoubleMatrixFactory.DEFAULT.make(1, 1, sumsq);
}
@Override
public DoubleMatrix getXty(double[] y) {
double sumprod = 0;
for (int i = 0; i < size; i++)
sumprod += covariate[i] * y[i];
return DoubleMatrixFactory.DEFAULT.make(1, 1, sumprod);
}
@Override
public DoubleMatrix getyhat(DoubleMatrix beta) {
double scalar = beta.get(0, 0);
DoubleMatrix yhat = DoubleMatrixFactory.DEFAULT.make(size, 1, covariate);
yhat.scalarMultEquals(scalar);
return yhat;
}
@Override
public DoubleMatrix getyhat(double[] beta) {
double scalar = beta[0];
DoubleMatrix yhat = DoubleMatrixFactory.DEFAULT.make(size, 1, covariate);
yhat.scalarMultEquals(scalar);
return yhat;
}
public DoubleMatrix getXtX2(CovariateModelEffect cme) {
double sumprod = 0;
for (int i = 0; i < size; i++)
sumprod += covariate[i] * cme.covariate[i];
return DoubleMatrixFactory.DEFAULT.make(1, 1, sumprod);
}
public double[] getCovariate() {
return covariate;
}
public double getSum() {
return sum;
}
public double getSumSquares() {
return sumsq;
}
@Override
public ModelEffect getCopy() {
return new CovariateModelEffect(Arrays.copyOf(covariate, size), size, sum, sumsq, id);
}
@Override
public ModelEffect getSubSample(int[] sample) {
// TODO Auto-generated method stub
int numberOfSamples = sample.length;
double[] sampleCov = new double[numberOfSamples];
for (int i = 0; i < numberOfSamples; i++)
sampleCov[i] = covariate[sample[i]];
return new CovariateModelEffect(sampleCov, id);
}
@Override
public int getEffectSize() {
return 1;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy