All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.maizegenetics.stats.linearmodels.FactorModelEffect Maven / Gradle / Ivy

Go to download

TASSEL is a software package to evaluate traits associations, evolutionary patterns, and linkage disequilibrium.

The newest version!
package net.maizegenetics.stats.linearmodels;

import java.util.Arrays;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;

public class FactorModelEffect implements ModelEffect {
    private Object id;
    private final int[] levels;
    private final int[] levelCounts;
    private final int size;
    private final int numberOfLevels;
    private boolean restricted = false;

    public FactorModelEffect(int[] levels, boolean restricted) {
        this.levels = levels;
        size = levels.length;
        this.restricted = restricted;
        int maxLevel = 0;
        for (int level : levels) {
            maxLevel = Math.max(maxLevel, level);
        }
        numberOfLevels = maxLevel + 1;
        int[] counts = new int[numberOfLevels];
        for (int level : levels) {
            counts[level]++;
        }
        levelCounts = counts;
    }

    public FactorModelEffect(int[] levels, boolean restricted, Object id) {
        this(levels, restricted);
        this.id = id;
    }

    private FactorModelEffect(Object id, int[] levels, int[] levelCounts, int size,
            int numberOfLevels, boolean restricted) {
        this.id = id;
        this.levels = Arrays.copyOf(levels, levels.length);
        this.levelCounts = Arrays.copyOf(levelCounts, levelCounts.length);
        this.size = size;
        this.numberOfLevels = numberOfLevels;
        this.restricted = restricted;
    }

    @Override
    public Object getID() {
        return id;
    }

    @Override
    public int getSize() {
        return size;
    }

    @Override
    public DoubleMatrix getX() {
        if (restricted)
            return getX_restricted();
        return getX_unrestricted();
    }

    @Override
    public DoubleMatrix getXtX() {
        if (restricted)
            return getXtX_restricted();
        return getXtX_unrestricted();
    }

    @Override
    public DoubleMatrix getXty(double[] y) {
        if (restricted)
            return getXty_restricted(y);
        return getXty_unrestricted(y);
    }

    @Override
    public void setID(Object id) {
        this.id = id;
    }

    /**
     * @param fme a FactorModelEffect
     * @return the matrix product of this ModelEffect transposed and fme
     */
    public DoubleMatrix getXtX2(FactorModelEffect fme) {
        int n1 = numberOfLevels;
        if (restricted)
            n1--;
        int n2 = fme.numberOfLevels;
        if (fme.restricted)
            n2--;

        DoubleMatrix xtx2 = DoubleMatrixFactory.DEFAULT.make(n1, n2, 0);
        for (int i = 0; i < size; i++) {
            int row = levels[i];
            int col = fme.levels[i];
            if (row < n1 && col < n2)
                xtx2.set(row, col, xtx2.get(row, col) + 1);
        }
        return xtx2;

    }

    @Override
    public DoubleMatrix getyhat(DoubleMatrix beta) {
        if (restricted)
            return getyhat_restricted(beta);
        return getyhat_unrestricted(beta);
    }

    @Override
    public DoubleMatrix getyhat(double[] beta) {
        if (restricted)
            return getyhat_restricted(beta);
        return getyhat_unrestricted(beta);
    }

    /**
     * @return the level of each observation for this factor
     */
    public int[] getLevels() {
        return levels;
    }

    public boolean getRestricted() {
        return restricted;
    }

    public void setRestricted(boolean restricted) {
        this.restricted = restricted;
    }

    public int getNumberOfLevels() {
        return numberOfLevels;
    }

    @Override
    public int[] getLevelCounts() {
        return levelCounts;
    }

    //private methods

    private DoubleMatrix getX_unrestricted() {
        DoubleMatrix X = DoubleMatrixFactory.DEFAULT.make(size, numberOfLevels, 0);
        for (int i = 0; i < size; i++) {
            X.set(i, levels[i], 1);
        }
        return X;
    }

    private DoubleMatrix getX_restricted() {
        DoubleMatrix X = DoubleMatrixFactory.DEFAULT.make(size, numberOfLevels - 1, 0);
        for (int i = 0; i < size; i++) {
            if (levels[i] < numberOfLevels - 1)
                X.set(i, levels[i], 1);
        }
        return X;
    }

    private DoubleMatrix getXtX_unrestricted() {
        double[] counts = new double[numberOfLevels];
        for (int i = 0; i < numberOfLevels; i++)
            counts[i] = (int) levelCounts[i];
        DoubleMatrix xtx = DoubleMatrixFactory.DEFAULT.diagonal(counts);
        return xtx;
    }

    private DoubleMatrix getXtX_restricted() {
        double[] counts = new double[numberOfLevels - 1];
        for (int i = 0; i < numberOfLevels - 1; i++)
            counts[i] = (int) levelCounts[i];
        DoubleMatrix xtx = DoubleMatrixFactory.DEFAULT.diagonal(counts);
        return xtx;
    }

    private DoubleMatrix getXty_unrestricted(double[] y) {
        double[] sums = new double[numberOfLevels];
        for (int i = 0; i < size; i++) {
            sums[levels[i]] += y[i];
        }
        return DoubleMatrixFactory.DEFAULT.make(numberOfLevels, 1, sums);
    }

    private DoubleMatrix getXty_restricted(double[] y) {
        double[] sums = new double[numberOfLevels - 1];
        for (int i = 0; i < size; i++) {
            if (levels[i] < numberOfLevels - 1)
                sums[levels[i]] += y[i];
        }
        return DoubleMatrixFactory.DEFAULT.make(numberOfLevels - 1, 1, sums);
    }

    private DoubleMatrix getyhat_unrestricted(DoubleMatrix beta) {
        if (beta.numberOfRows() != numberOfLevels)
            throw new IllegalArgumentException("Number of factor levels is not the same as the size of beta.");
        double[] yhat = new double[size];
        for (int i = 0; i < size; i++)
            yhat[i] = beta.get(levels[i], 0);
        return DoubleMatrixFactory.DEFAULT.make(size, 1, yhat);
    }

    private DoubleMatrix getyhat_restricted(DoubleMatrix beta) {
        if (beta.numberOfRows() != numberOfLevels - 1)
            throw new IllegalArgumentException("Number of factor levels is not the same as the size of beta.");
        double[] yhat = new double[size];
        for (int i = 0; i < size; i++) {
            if (levels[i] < numberOfLevels - 1)
                yhat[i] = beta.get(levels[i], 0);
        }
        return DoubleMatrixFactory.DEFAULT.make(size, 1, yhat);
    }

    private DoubleMatrix getyhat_unrestricted(double[] beta) {
        if (beta.length != numberOfLevels)
            throw new IllegalArgumentException("Number of factor levels is not the same as the size of beta.");
        double[] yhat = new double[size];
        for (int i = 0; i < size; i++)
            yhat[i] = beta[levels[i]];
        return DoubleMatrixFactory.DEFAULT.make(size, 1, yhat);
    }

    private DoubleMatrix getyhat_restricted(double[] beta) {
        if (beta.length != numberOfLevels - 1)
            throw new IllegalArgumentException("Number of factor levels is not the same as the size of beta.");
        double[] yhat = new double[size];
        for (int i = 0; i < size; i++) {
            if (levels[i] < numberOfLevels - 1)
                yhat[i] = beta[levels[i]];
        }
        return DoubleMatrixFactory.DEFAULT.make(size, 1, yhat);
    }

    @Override
    public ModelEffect getCopy() {

        return new FactorModelEffect(id,
                Arrays.copyOf(levels, levels.length),
                Arrays.copyOf(levelCounts, levelCounts.length),
                size,
                numberOfLevels,
                restricted);
    }

    @Override
    public ModelEffect getSubSample(int[] sample) {
        int numberOfSamples = sample.length;
        int[] sampleLevels = new int[numberOfSamples];
        for (int i = 0; i < numberOfSamples; i++) {
            sampleLevels[i] = levels[sample[i]];
        }

        //adjust in case a level is not used
        return new FactorModelEffect(ModelEffectUtils.getIntegerLevels(sampleLevels), restricted, id);
    }

    @Override
    public int getEffectSize() {
        if (restricted)
            return numberOfLevels - 1;
        else
            return numberOfLevels;
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy