net.maizegenetics.matrixalgebra.decomposition.SymmetricEigenvalueDecomposition Maven / Gradle / Ivy
package net.maizegenetics.matrixalgebra.decomposition;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrix;
import net.maizegenetics.matrixalgebra.Matrix.DoubleMatrixFactory;
//modified from the EigenvalueDecomposition of Colt version 1.2 by converting A and V from
//2-d arrays to 1-d arrays in order to improve performance
public class SymmetricEigenvalueDecomposition implements EigenvalueDecomposition {
double[] V; //storage of eigenvectors
int n;
int size;
double[] d,e; //storage of eigenvalues
public SymmetricEigenvalueDecomposition(double[] matrix) {
size = matrix.length;
V = new double[size];
for (int i = 0; i < size; i++) V[i] = matrix[i];
n = (int) Math.round(Math.sqrt(size));
d = new double[n];
e = new double[n];
// Tridiagonalize.
tred2();
// Diagonalize.
tql2();
}
public double[] getRealEigenvalues(){
return d;
}
public double[] getEigenvectorsAs1dArray() {
return V;
}
/**
Symmetric Householder reduction to tridiagonal form.
*/
private void tred2 () {
// This is derived from the Algol procedures tred2 by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
int start = size - n;
for (int j = 0; j < n; j++) {
d[j] = V[start + j] ; // d equals the last row of V
}
// Householder reduction to tridiagonal form.
int starti = size;
for (int i = n-1; i > 0; i--) {
// Scale to avoid under/overflow.
starti -= n;
double scale = 0.0;
double h = 0.0;
for (int k = 0; k < i; k++) {
scale = scale + Math.abs(d[k]);
}
if (scale == 0.0) {
e[i] = d[i-1];
for (int j = 0; j < i; j++) {
d[j] = V[starti - n + j];
V[starti + j] = 0.0;
V[j * n + i] = 0.0;
}
} else {
// Generate Householder vector.
for (int k = 0; k < i; k++) {
d[k] /= scale;
h += d[k] * d[k];
}
double f = d[i-1];
double g = Math.sqrt(h);
if (f > 0) {
g = -g;
}
e[i] = scale * g;
h = h - f * g;
d[i-1] = f - g;
for (int j = 0; j < i; j++) {
e[j] = 0.0;
}
// Apply similarity transformation to remaining columns.
int startj = 0;
for (int j = 0; j < i; j++) {
f = d[j];
V[startj + i] = f;
g = e[j] + V[startj + j] * f;
int cell = startj + n + j;
for (int k = j+1; k <= i-1; k++) {
g += V[cell] * d[k];
e[k] += V[cell] * f;
cell += n;
}
e[j] = g;
startj += n;
}
f = 0.0;
for (int j = 0; j < i; j++) {
e[j] /= h;
f += e[j] * d[j];
}
double hh = f / (h + h);
for (int j = 0; j < i; j++) {
e[j] -= hh * d[j];
}
for (int j = 0; j < i; j++) {
f = d[j];
g = e[j];
int cell = j * n + j;
for (int k = j; k <= i-1; k++) {
V[cell] -= (f * e[k] + g * d[k]);
cell += n;
}
cell = starti - n + j;
d[j] = V[cell];
cell += n;
V[cell] = 0.0;
}
}
d[i] = h;
}
// Accumulate transformations.
int rowi = 0;
int lastrow = size - n;
int lastcol = n - 1;
int cell;
for (int i = 0; i < n-1; i++) {
cell = rowi + i;
V[lastrow + i] = V[cell];
V[cell] = 1.0;
double h = d[i+1];
if (h != 0.0) {
int celliplus1 = i + 1;
for (int k = 0; k <= i; k++) {
d[k] = V[celliplus1] / h;
celliplus1 += n;
}
for (int j = 0; j <= i; j++) {
double g = 0.0;
celliplus1 = i + 1;
int cellj = j;
for (int k = 0; k <= i; k++) {
g += V[celliplus1] * V[cellj];
celliplus1 += n;
cellj += n;
}
cellj = j;
for (int k = 0; k <= i; k++) {
V[cellj] -= g * d[k];
cellj += n;
}
}
}
int celliplus1 = i + 1;
for (int k = 0; k <= i; k++) {
V[celliplus1] = 0.0;
celliplus1 +=n;
}
rowi += n;
}
for (int j = 0; j < n; j++) {
cell = lastrow + j;
d[j] = V[cell];
V[cell] = 0.0;
}
V[lastrow + lastcol] = 1.0;
e[0] = 0.0;
}
/**
Symmetric tridiagonal QL algorithm.
*/
private void tql2 () {
// This is derived from the Algol procedures tql2, by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
for (int i = 1; i < n; i++) {
e[i-1] = e[i];
}
e[n-1] = 0.0;
double f = 0.0;
double tst1 = 0.0;
double eps = Math.pow(2.0,-52.0);
for (int l = 0; l < n; l++) {
// Find small subdiagonal element
tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
int m = l;
while (m < n) {
if (Math.abs(e[m]) <= eps*tst1) {
break;
}
m++;
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l) {
int iter = 0;
do {
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
double g = d[l];
double p = (d[l+1] - g) / (2.0 * e[l]);
double r = hypot(p,1.0);
if (p < 0) {
r = -r;
}
d[l] = e[l] / (p + r);
d[l+1] = e[l] * (p + r);
double dl1 = d[l+1];
double h = g - d[l];
for (int i = l+2; i < n; i++) {
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
double c = 1.0;
double c2 = c;
double c3 = c;
double el1 = e[l+1];
double s = 0.0;
double s2 = 0.0;
for (int i = m-1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c * e[i];
h = c * p;
r = hypot(p,e[i]);
e[i+1] = s * r;
s = e[i] / r;
c = p / r;
p = c * d[i] - s * g;
d[i+1] = h + s * (c * g + s * d[i]);
// Accumulate transformation.
int celliplus1 = i + 1;
int celli = 1;
for (int k = 0; k < n; k++) {
h = V[celliplus1];
V[celliplus1] = s * V[celli] + c * h;
V[celli] = c * V[celli] - s * h;
celliplus1 += n;
celli += n;
}
}
p = -s * s2 * c3 * el1 * e[l] / dl1;
e[l] = s * p;
d[l] = c * p;
// Check for convergence.
} while (Math.abs(e[l]) > eps*tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (int i = 0; i < n-1; i++) {
int k = i;
double p = d[i];
for (int j = i+1; j < n; j++) {
if (d[j] < p) {
k = j;
p = d[j];
}
}
if (k != i) {
d[k] = d[i];
d[i] = p;
int celli = i;
int cellk = k;
for (int j = 0; j < n; j++) {
p = V[celli];
V[celli] = V[cellk];
V[cellk] = p;
celli += n;
cellk += n;
}
}
}
}
//cern.colt.matrix.linalg.Algebra.hypot
private double hypot(double a, double b) {
double r;
if (Math.abs(a) > Math.abs(b)) {
r = b/a;
r = Math.abs(a)*Math.sqrt(1+r*r);
} else if (b != 0) {
r = a/b;
r = Math.abs(b)*Math.sqrt(1+r*r);
} else {
r = 0.0;
}
return r;
}
@Override
public double getEigenvalue(int i) {
return d[i];
}
@Override
public DoubleMatrix getEigenvalueMatrix() {
return DoubleMatrixFactory.DEFAULT.diagonal(d);
}
@Override
public double[] getEigenvalues() {
return d;
}
@Override
public DoubleMatrix getEigenvectors() {
return DoubleMatrixFactory.DEFAULT.make(n, n, V);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy