net.maizegenetics.stats.linearmodels.WithinPopulationPermuter Maven / Gradle / Ivy
package net.maizegenetics.stats.linearmodels;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;
public class WithinPopulationPermuter {
final double[] data;
final int npops;
ArrayList popIndices = new ArrayList();
static Random randomizer = new Random();
public WithinPopulationPermuter(double[] originalData, FactorModelEffect popEffect) {
data = originalData;
npops = popEffect.getNumberOfLevels();
int[] levels = popEffect.getLevels();
int[] levelCounts = popEffect.getLevelCounts();
for(int p = 0; p < npops; p++) {
popIndices.add(new int[levelCounts[p]]);
}
int[] count = new int[npops];
int n = levels.length;
for (int i = 0; i < n; i++) {
int pop = levels[i];
popIndices.get(pop)[count[pop]++] = i;
}
}
public double[] getPermutedData() {
int ndata = data.length;
double[] permutedData = Arrays.copyOf(data, ndata);
for (int p = 0; p < npops; p++) {
int[] ndx = popIndices.get(p);
int n = ndx.length;
for (int i = n - 1; i >= 1; i--) {
int j = randomizer.nextInt(i + 1);
double temp = permutedData[ndx[j]];
permutedData[ndx[j]] = permutedData[ndx[i]];
permutedData[ndx[i]] = temp;
}
}
return permutedData;
}
public void permuteData(double[] data) {
int ndata = data.length;
for (int p = 0; p < npops; p++) {
int[] ndx = popIndices.get(p);
int n = ndx.length;
for (int i = n - 1; i >= 1; i--) {
int j = randomizer.nextInt(i + 1);
double temp = data[ndx[j]];
data[ndx[j]] = data[ndx[i]];
data[ndx[i]] = temp;
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy